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Abstract
Aim of study: The purpose was to determine the type of dormancy and the optimal germination conditions of Phillyrea angustifolia 

(Oleaceae) seeds.
Area of study: Germination requirements of P. angustifolia seeds collected from wild plants growing in the province of Ávila 

(Central Spain) were studied.
Materials and methods: Seed water uptake was measured. Seeds with and without an endocarp were germinated at different 

temperatures, and several treatments were tested.
Main results: The lignified endocarp interferes mechanically with the emergence of the radicle, and the treatments that achieved 

the highest germination percentages were the total removal of the endocarp with pliers (84%) or the immersion in liquid nitrogen for 
1 min (97%). Scarification with concentrated sulphuric acid did not significantly increase germination compared to the control seeds, 
and treatments with dry heat or wet heat were detrimental to seed germination. The optimum temperature for germination was 15 ºC. A 
pre-sowing treatment of soaking in distilled water for 24 h slightly increased germination speed. Neither cold stratification at 5 ºC nor 
soaking in a gibberellic acid solution improved seed germination. 

Research highlights: Phillyrea angustifolia seeds have physiological dormancy – that is, the embryo does not have enough growth 
potential to overcome the mechanical restriction of the lignified endocarp. The seeds do not exhibit physical dormancy, given their 
water-permeable lignified endocarp. Our results suggest that the optimum germination protocol for P. angustifolia would be the total 
removal of the endocarp or immersion in liquid nitrogen for 1 min, followed by immersion in distilled water for 24 h and then seed 
incubation at 15 ºC in light or darkness.
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Introduction 

Plants living in Mediterranean ecosystems face 
serious environmental constraints. These plants cope 
with extreme summer droughts and frequent fires that 
play an important role in such ecosystems (Chaves et 
al., 2002). Climate change might alter the hydrological 
cycle in the Mediterranean region (Mariotti et al., 2008), 
and models predict a reduction in total precipitation and 
drier summers (Christensen et al., 2007) as well as an 
increase in fire hazard (Moriondo et al., 2006; Pausas et 
al., 2008; Moreno et al., 2010). In Mediterranean areas, 
drought, fire and plant regeneration strategies are closely 
interlinked (Parra et al., 2012; Orsenigo et al., 2014; 

Keyes & Manso González, 2015); therefore, knowledge 
of seed germination of Mediterranean species is a key 
factor for ecosystem conservation and for directing 
regeneration efforts (Thomas & Garcia-Marti, 2015). 

Phillyrea angustifolia L. (Oleaceae), narrow-leaved 
mock privet or evergreen privet, is a small tree that 
appears scattered in dense evergreen Mediterranean 
forests and tall shrublands. It grows in well-preserved 
habitats across warm and dry areas and plays an 
important role in post-fire ecological dynamics (Herrera 
et al., 1994; Vitale et al., 2007). Many of the natural and 
semi-natural forests in which P. angustifolia grows are 
under decline due to climate change and centuries of 
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intense land use (Blondel et al., 2010), and restoration 
efforts are underway (Gómez-Aparicio et al., 2004). 
Moreover, this thermophilic and low-water-demanding 
species is increasingly used for landscaping purposes 
(De Marco et al., 2005). In recent years, there has been 
a renewed interest in P. angustifolia plant production 
for use in general planting and restoration programmes.

Phillyrea angustifolia can be propagated by seed as 
well as vegetatively, but growth of cuttings is difficult 
(Piotto & Di Noi, 2003). Both in nature and in nurseries, 
poor, unreliable seed germination is common (Catalán, 
1991; Traveset et al., 2007). The genus Phillyrea produces 
blue-black drupes, usually containing a single seed, 
which are dispersed by animals, such as goats and birds 
(Herrera et al., 1998; Traveset et al., 2007; Andrés, 2011). 
Due to their lignified endocarp, it has been suggested 
that Phillyrea seeds might have physical dormancy 
(García-Fayos et al., 2001; Takos & Efthimiou, 2003). 
However, water absorption by the endocarp has not been 
determined, and dormancy-breaking protocols have not 
been optimised (Catalán, 1991). Better knowledge of the 
germination behaviour of P. angustifolia seeds is crucial 
for the establishment of an efficient propagation protocol. 

The study reported here provides evidence of the 
effects of different environmental conditions and 
treatments on the germination of P. angustifolia seeds. 
The specific objectives of the study were: (1) to elucidate 
the kind of dormancy; (2) to establish an optimised 
seed scarification treatment; and (3) to investigate 
the optimal conditions for the seed germination and 
seedling emergence of P. angustifolia.

Materials and methods 

Seed collection

Mature fruits of P. angustifolia were collected in 
September 2012 from a wild population located in 
the province of Ávila (central Spain) and provided 
by Semillas Montaraz S.A. The fleshy exocarp and 
mesocarp were manually removed at the laboratory 
(Figure 1). Seeds with an endocarp were stored for one 
month under laboratory conditions (at ~23 ºC, under 
darkness, 35% relative humidity) until the start of trials, 
in October 2012. Initial seed viability was evaluated by a 
tetrazolium test. Seeds were cut in half and submerged in 
a 1% solution of tetrazolium chloride for 24 h in darkness 
at 25 ºC. Initial seed viability of the lot was 88%.

Water uptake during seed imbibition 

To determine the water uptake capacity during seed 
imbibition, four replicates of 10 seeds (with and without 

an endocarp) were weighed and then placed into Petri 
dishes on filter paper moistened with distilled water. 
After 1, 2, 4, 6, 10, 24, 48, 72 and 168 h of imbibition, 
seeds were quickly surface-dried with filter paper and 
then reweighed. Percentage of water uptake (mean ± 
standard error) was calculated as the amount of water 
absorbed by seeds relative to the initial seed mass. 

Germination assays

For all germination trials, four replicates of 25 seeds 
were incubated in 9-cm-diameter glass Petri dishes, 
on two sheets of filter paper moistened with 4 mL of 
distilled water. Seeds were selected randomly within the 
seed lot, which consisted of 500 g of seeds. In order to 
avoid contamination, seeds were disinfected previously 
in 10% hydrochloric acid for 5 min and then washed 
with distilled water for 50 s. Filter papers were rewetted 
regularly with distilled water, as required. Samples 
were checked daily, and germinated seeds were counted 
and removed. The criterion of germination was normal 
seedling development (ISTA, 2009). The incubation 
period was 100 days. Seeds that had not germinated at 
the end of the incubation period were cut opened and, if 
empty, excluded from analyses. The number of empty 
seeds was always ≤ 2% of the total number of seeds.

Seed scarification treatments 

Different scarification treatments were applied to 
seeds with an endocarp before incubation at 15 ºC with 
a 16-h light photoperiod:
- Mechanical scarification: endocarp was totally remo-
ved using pliers.
- Dry heat: seeds were placed in an oven at 50 ºC, 80 ºC 
or 100 ºC for 30 min.
- Wet heat: seeds were immersed in distilled water at 
80 ºC for 5 min or at 100 ºC for 5 sec and then allowed 
to cool in the same water at room temperature for 2 h.
- Sulphuric acid (H2SO4): seeds were immersed in 
sulphuric acid (96%) for 1 min and then repeatedly 
washed with distilled water before sowing.

Figure 1. Fruit and seed of Phillyrea angustifolia.
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- Liquid nitrogen (LN): seeds were immersed in LN 
(-196 ºC) for 1 min, 30 min, 1 h or 24 h before sowing.

Germination temperature and light regimes 

Seeds with and without an endocarp were tested for 
germination at different constant temperatures (5 ºC, 
10 ºC, 15 ºC, 20 ºC, 25 ºC) and alternate temperature 
regimes (20/10 ºC and 25/15 ºC) with a 16-h light 
photoperiod provided by cool white fluorescent tubes 
with an irradiance of 35 μmol m-2 s-1. For alternating 
temperature regimes, the higher temperature was 
programmed for 16 h in light and the lower one for 8 
h in darkness. Also, seeds were incubated under total 
darkness at 15 ºC. 

Pre-sowing treatments

Seeds without an endocarp were incubated at 15 ºC 
with a 16-h light photoperiod after different pre-sowing 
treatments: 
- Distilled water: Seeds were soaked in distilled water at 
room temperature (~23 ºC) for 24 h. 
- Gibberellic acid (GA3): Seeds were soaked in a GA3 
solution (1000 mg L-1) at room temperature (~23 ºC) 
for 24 h. 
- Cold stratification: Seeds were stored in moist vermi-
culite under darkness at 5 ºC for 30, 60 or 90 days. 

Statistical analysis

The statistical analysis of seed germination data 
was performed using the approach proposed by Ritz 
et al. (2013) with the package ‘drc’ (Ritz & Streibig, 
2005) of the software environment R (R Core Team, 
2015). We used a nonlinear log-logistic model to relate 
the cumulative germination and to monitor time after 
initialisation of the test [1].
            

F(t) = d / (1 + exp[b(log(t) - log(MGT)])

where d is the maximum germination percentage; MGT 
(mean germination time) is the time where 50% of 
the seeds that germinated during the experiment have 
germinated; and b is proportional to the slope of F at time 
t. The estimation of nonlinear regression parameters 
was based on treating the data as event time – that is, 
considering the monitoring interval during which seeds 
germinated or the time interval of the entire experiment 
if they did not germinate. Thus, we have a multinomial 
distribution across these intervals, and this distribution 
was used to obtain the parameter estimates by maximum 
likelihood. The time–event model implemented in the 

‘drc’ package allows parameter comparison among 
germination curves for different treatment groups.

Results

Water uptake during seed imbibition 

Seeds of P. angustifolia without an endocarp imbibed 
water quickly after 24 h, and seed mass increased by 
47% (Figure 2). Seeds with an endocarp absorbed water 
at a lower rate, and, after 24 h, their mass had increased 
by 25%. After 72 h, the mass of seeds with and 
without an endocarp had increased by 39% and 53%, 
respectively. After 7 days, the mass of seeds without an 
endocarp was greater (54%) than that of seeds with an 
endocarp (41%). Results of water uptake in seeds with 
and without an endocarp are expressed as percentage 
of initial mass in order to not account for differences in 
mass between samples due to the mass of the endocarp 
itself.

Seed scarification treatments 

Germination data were fitted to a nonlinear log-
logistic model curve, and values of maximum 
germination and MGT were calculated. Control 
seeds of P. angustifolia with an endocarp showed 
slow germination (68 day MGT), with maximum 
germination increasing progressively up to 59% (Table 
1, Figure 3). On the other hand, seeds whose endocarp 
had been removed mechanically achieved 84% of 
germination with a MGT of 22 days. Also, immersion 
in LN for 1 min achieved high germination (97%), 
albeit slowly (70 day MGT) (Table 1). Seeds treated 
with H2SO4 showed a significantly lower germination 

Figure 2. Water hydration curve (% initial weight) of Phil-
lyrea angustifolia seeds with an endocarp (●) and without 
an endocarp (○).
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percentage (51%) than those whose endocarp had been 
removed mechanically (84%). Seeds treated with LN 
for 30 min or more germinated less than non-treated 
seeds. Likewise, neither dry nor wet heat significantly 
improved seed germination.

Germination temperature and light regimes 

Significant differences (p < 0.05) of final germination 
percentages and germination speed were observed 
among germination incubation temperatures of seeds 
with and without an endocarp (Table 2, Figure 4). 
Germination percentages reached by P. angustifolia 
seeds with an endocarp were 45–53% at temperatures ≥ 
15 ºC, with slow germination (MGT values ranged from 
54–77 days) (Figure 4). Germination of seeds without 
an endocarp ranged from 83–90% for any temperature 
between 15 ºC and 25 ºC. Moreover, 15 ºC presented 
the best results in terms of germination speed, with 
slight differences between light and darkness (Table 2). 

Pre-sowing treatments 

The effect of different pre-sowing treatments on the 
germination of seeds without an endocarp is shown 
in Table 3 and Figure 5. No significant differences 
(p > 0.05) were found among the final germination 
percentages reached by control seeds (non-treated 
seeds without an endocarp) nor seeds soaked in 
distilled water. However, both GA3 and stratification 
at 5 ºC for 30–90 days significantly decreased the final 

Figure 3. Germination time courses of Phillyrea angustifolia seeds with an endocarp after different treatments. Warm and 
acid treatments (A): control with endocarp (�); manual scarification (�); dry heat at 50 ºC (

Δ

), at 80 ºC (Δ) and at 100 ºC 
(n); wet heat at 80 ºC (o) and at 100 ºC (¿); and sulphuric acid for 1 min (¯). Liquid nitrogen scarification (B): control 
with endocarp (�); manual scarification (�); and liquid nitrogen for 1 min (▼), 30 min (Δ), 1 h (Ò) and 24 h (¿). Values 
are averages of four replicates ± standard error. Data were fitted to a nonlinear log-logistic model (curves), and values of 
maximum germination and mean germination time were calculated.

Table 1. Seed germination curve parameters of Phillyrea 
angustifolia seeds with an endocarp after different pre-sow-
ing treatments: maximum germination percentage (mean 
± standard error (SE)) and mean germination time (MGT 
± SE). Parameters were estimated by maximum likelihood 
from a nonlinear log-logistic model with a multinomial dis-
tribution. Within a column, values followed by the same let-
ters are not significantly different (p > 0.05). Mean germi-
nation time was not calculated (NC) when final germination 
was equal to or less than 5%. 

Treatment Germination
(% ± SE)

MGT
(days ± SE)

Non-treated seeds (control) 59 ± 11 bc  68 ± 9 de

Mechanical scarification 84 ± 4 a  22 ± 1 a

Dry heat 

50 ºC 37 ± 5 bcd  52 ± 3 db

80 ºC   0 NC

100 ºC   0 NC

Wet heat

80 ºC   2 ± 1 e NC

100 ºC   0 NC

Sulphuric acid (1 min) 51 ± 5 b  32 ± 2 c

Liquid nitrogen (-196 ºC)

1 min 97 ± 3 a 70 ± 6 e

30 min 40 ± 11 bcd  76 ± 14 e

1 h 24 ± 4 d  57 ± 4 bde

24 h 29 ± 8 cd  66 ± 16 bde
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germination percentage compared to that of the control 
(≤ 42% vs. 84%, respectively). Cold stratification at 
5 ºC was also detrimental to seeds with an endocarp 
(Table 3). Germination speed was faster in seeds soaked 
in distilled water than in the other treatments. 

Discussion

Information on the germination strategies of 
Mediterranean plant species is most relevant for 

ecosystem conservation, especially in the context of 
climate change. Our data provide useful information 
on germination protocols for ex situ propagation of 
P. angustifolia. The regeneration potential of a given 
species depends on the effect of ambient conditions 
on its propagation strategy, with high germination 
percentages and short germination times being desirable. 
In most conditions studied here, P. angustifolia seed 
germination was low, delayed and gradual, resulting 
in plants at different ages, which is undesirable from a 
commercial seedling production viewpoint. 

Figure 4. Germination time courses of Phillyrea angustifolia seeds with an endocarp (A) and without an endocarp (B) 
at different temperatures and light conditions: 5 ºC (�), 10 ºC (�), 10/20 ºC ( Δ), 15 ºC darkness (Δ), 15 ºC (n), 20 ºC 
(o), 25 ºC (¯) and 25/15 ºC (¿). Values are averages of four replicates. Data were fitted to a nonlinear log-logistic model 
(curves), and values of maximum germination and mean germination time were calculated.

Table 2. Seed germination curve parameters at different temperature regimes and light conditions of Phillyrea angus-
tifolia seeds with and without an endocarp: maximum germination percentage (mean ± standard error (SE)) and mean 
germination time (MGT ± SE). Parameters were estimated by maximum likelihood from a nonlinear log-logistic model 
with a multinomial distribution. Within a column, values followed by the same letters are not significantly different (p > 
0.05). Within a row, for each parameter (germination and MGT) and germination condition, the significance level between 
seeds with and without an endocarp is shown (p).

Temp.
(ºC)

Light
conditions

Germination (% ± SE) MGT (days ± SE)

With 
endocarp

Without
endocarp p With

endocarp
Without
endocarp p

5 light   8 ± 3 b 45 ± 15 c * 83 ± 3 c 78 ± 24 cde ns
10 light 13 ± 3 b 61 ± 5 c *** 87 ± 5 c 34 ± 2 c ***
15 light 52 ± 7 a 84 ± 4 ab *** 63 ± 6 ab 22 ± 1 b ***
15 darkness 52 ± 6 a 83 ± 4 ab *** 54 ± 4 a 18 ± 1 a ***
20 light 63 ± 10 a  90 ± 3 a * 77 ± 7 bc 40 ± 1 d ***

20/10 light 60 ± 10 a 75 ± 4 bc ns 70 ± 8 abc 31 ± 1 c ***
25 light 46 ± 5 a 90 ± 3 a *** 64 ± 2 b 47 ± 1 e ***

25/15 light 51 ± 8 a 88 ± 3 a *** 72 ± 6 bc 48 ± 1 e ***

*** p < 0.001; ** p < 0.01; * p < 0.05; ns, not significant.



Sara Mira, Alberto Arnal and Félix Pérez-García

Forest Systems April 2017 • Volume 26 • Issue 1 • e002

6

The endocarp clearly impeded seed germination, 
with only half the seeds germinating after 100 days of 
incubation. A high and rapid germination was achieved 
after total removal of the endocarp with pliers, with 
most seeds germinating after 30 days. However, this 
technique is enormously time-consuming and highly 
dependent on operator experience, since the seed can be 
easily smashed. A high germination percentage also was 
achieved when seeds with an endocarp were scarified 
with a 1-min immersion in LN. Seeds germinated 

gradually during a longer time period but with the 
advantage that this treatment can be standardised easily. 
Immersion in LN for longer time periods (30 min, 1 h, 24 
h) resulted in lower germination percentages. Regarding 
the effects of temperature, the highest germination 
percentage was obtained at 15 ºC. These results are in 
agreement with those of Thanos et al. (1992, 1995), 
who found that the optimal germination temperature for 
most Mediterranean shrub species ranges between 15 
ºC and 20 ºC, and with previous data on P. angustifolia 
seeds collected at a different geographical location 
(Mira et al., 2015b). 

Common germination treatments generally 
recommended for forestry species did not lead 
to satisfactory results with P. angustifolia. Acid 
scarification has been suggested as the best technique 
to promote germination in several species with a stony 
endocarp (Young & Young, 1992), and this technique 
has been recommended previously for Phillyrea species 
(Bacchetta et al., 2008; Ballesteros et al., 2015), alone 
or followed by wet heat (Semillas Silvestres S.L., 2010). 
However, our results indicated that a 1-min immersion 
in H2SO4 achieved lower germination percentages than 
scarification with pliers or LN. While longer treatments 
obtained high germination amounts in previous studies 
(Bacchetta et al., 2008; Semillas Silvestres S.L., 2010; 
Ballesteros et al., 2015), results also indicate that a 
30-min or 6-h treatment of H2SO4 was undesirable 
for seed germination in a different population of P. 
angustifolia (Mira et al., 2015b). Our data also showed 
that cold stratification (5 ºC) was detrimental to seed 
germination, either with or without an endocarp. Since 
longer cold stratification times reduced seed germination 
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Figure 5. Germination time courses of Phillyrea angusti-
folia seeds without an endocarp after different pre-sowing 
treatments: control (�); distilled water (�); gibberellic 
acid (GA3) (▼); and cold stratification at 5 ºC for 1 month 
(Δ), 3 months (n) and 6 months (o). Values are averages 
of four replicates ± standard error. Data were fitted to a 
nonlinear log-logistic model (curves), and values of max-
imum germination and mean germination time were cal-
culated.

Table 3. Seed germination parameters after different pre-sowing treatments for Phillyrea 
angustifolia seeds with and without an endocarp: maximum germination percentage (mean ± 
standard error (SE)) and mean germination time (MGT ± SE). Parameters were estimated by 
maximum likelihood from a nonlinear log-logistic model with a multinomial distribution. Mean 
values followed by the same letters within a column are not significantly different (p > 0.05). 
Mean germination time was not calculated (NC) when the final germination was equal to or less 
than 5%.

Treatment Endocarp Germination 
(% ± SE) 

MGT 
(days ± SE)

Control (mechanical scarification) Without 84 ± 4 a 22 ± 1 b
Soaking in distilled water (24 h) Without 78 ± 4 a 16 ± 0 a
Soaking in GA3 (1000 mg L-1; 24 h) Without 35 ± 5 bc 16 ± 1 a
Cold stratification (5 ºC) 
30 d Without 42 ± 8 bc 36 ± 5 c
60 d Without 33 ± 6 cd 38 ± 4 c
90 d Without   3 ± 2 e NC
30 d With 51 ± 6 b 58 ± 5 d
60 d With 19 ± 5 d 78 ± 7 e
90 d With   0 NC
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even though seeds that did not germinate were not 
dead, as seen by the cutting test, we hypothesise that 
low temperatures induce secondary dormancy. Cold 
stratification is a commonly applied treatment for 
forestry species growing in areas with cold winters, and 
several seed companies recommend cold stratification 
for Phillyrea seed germination (Semillas Silvestres 
S.L., 2010; Vilmorin, 2013). The inefficacy of cold 
stratification detected in our results agrees with previous 
works on Phillyrea species (García-Fayos et al., 2001; 
Mira et al., 2015b), but it is nonetheless striking, since 
the P. angustifolia population studied here grows in an 
area with cold winters (mean temperature of the coolest 
month is -0.7 ºC). 

Our results suggest that the lignified endocarp of 
P. angustifolia seeds interferes mechanically with the 
emergence of the radicle but not with the absorption of 
water. Albeit more slowly, seeds with an endocarp did 
imbibe water during soaking. This would indicate that, 
contrary to previous suggestions (García-Fayos et al., 
2001; Takos & Efthimiou, 2003), P. angustifolia seeds 
do not exhibit physical dormancy, which is defined as 
the presence of a water-impermeable layer in the seed 
or fruit (Baskin & Baskin, 2004). Since embryos are 
fully developed and seeds with and without an endocarp 
are water permeable, we conclude that P. angustifolia 
seeds have physiological dormancy (Baskin & Baskin, 
2004) – that is, the embryo does not have enough 
growth potential to overcome the mechanical restriction 
of the lignified endocarp. Similar results were reported 
in several species with a lignified endocarp (Baskin 
et al., 2002), including some species in the Oleaceae, 
such as Olea spp. (Cuneo et al., 2010). In nature, 
Phillyrea fruits are ripe in September–October and are 
dispersed from September to March, and germination 
and seedling emergence take place from February to 
April (Herrera et al., 1994; Andrés, 2011). Therefore, 
the endocarp might deteriorate in the soil during the 
season, allowing the seeds to germinate with early 
spring temperatures. Other authors found that seeds of 
Phillyrea latifolia are an important component of the 
soil seed bank (Ne’eman & Izhaki, 1999) and that they 
remain viable in the soil for more than 1 year (Herrera et 
al., 1994; Yucedag & Gultekin, 2011). Others reported 
that most seedlings emerge from fruits produced during 
the previous reproductive event (Lloret et al., 2004). 
Also, Olea europaea seeds do not germinate in the soil 
until the endocarp has been decomposed (Cuneo et al., 
2010). These observations suggest that warm followed 
by cold stratification might result in the germination 
of the species that is delayed and gradual during a 
period of time. By removing the endocarp or with LN 
scarification, a homogeneous and rapid germination can 
be achieved.

In accordance with the finding that the P. angustifolia 
endocarp is permeable, our results also have shown 
that scarification with H2SO4 was detrimental to seed 
viability. Acid scarification treatments are intended to 
mimic processes occurring when seeds are eaten and 
dispersed by animals. In field experiments, few seeds 
were recovered after being eaten by animals (Grande et 
al., 2013), supporting our finding of a deleterious effect 
of acid. However, while seed germination increased 
when eaten by goats (Grande et al., 2013), as seen in 
our data when compared to seeds with an endocarp, 
germination decreased when eaten by birds (Traveset 
et al., 2008). These apparently contradictory results 
may be explained on the basis of inter-population 
variability in endocarp permeability and hardness, as 
previously suggested for other Mediterranean species 
(Correia et al., 2014). A variation in seed germination 
requirements among populations also could explain 
the great differences found in germination response to 
temperature when compared to previous works. In our 
assay, germination at 20/10 ºC was 75%, while previous 
assays with P. angustifolia seeds collected in a different 
Spanish population obtained values of 10% germination 
at 20/7 ºC (Mira et al., 2015b) or values of 90% at 20/10 
ºC or 20/7 ºC (García-Fayos et al., 2001; Herranz et al., 
2006). Intraspecific variation in seed response to GA3 
also could explain that while our data show that GA3 
is detrimental to seed germination, previous results 
indicated that GA3 allowed high germination (Mira et 
al., 2015b). Intraspecific variation has been interpreted 
as one of the most important survival strategies for 
species growing under variable and unpredictable 
environmental conditions, as in Mediterranean forests, 
either in germination requirements (Kigel, 1995;  Baskin 
& Baskin, 2014), seed dormancy (Pérez-García et al., 
2012; Copete et al., 2014) or seed longevity (Lazar et 
al., 2014; Mira et al., 2011a, 2011b, 2015a).

Conclusions

Our results indicate that in P. angustifolia, the 
endocarp is water-permeable but may interfere 
mechanically with the emergence of the radicle. Total 
removal of the endocarp or immersion in LN for 1 
min were the treatments that showed the best results. 
Optimal germination temperature for P. angustifolia 
seeds was 15 ºC, and germination speed was increased 
by pre-soaking in distilled water. Sulphuric acid slightly 
increased seed germination and germination speed. 
Dry or wet heat; cold stratification; and GA3 were not 
beneficial to seed germination. Our study emphasises 
the need for a species-by-species investigation when 
trying to establish the optimal germination protocol of 
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a species as well as suggesting the necessity of taking 
into account the possible intraspecific variation in 
germination requirements for P. angustifolia.
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