
RESEARCH ARTICLE OPEN ACCESS

Estimating forest uniformity in Eucalyptus spp. and Pinus taeda L. 
stands using field measurements and structure from motion point 

clouds generated from unmanned aerial vehicle (UAV) data collection
Ângela M. K. Hentz1, Carlos A. Silva2, Ana P. Dalla Corte1, Sylvio P. Netto1, Michael P. Strager3, and Carine Klauberg4

1Federal University of Paraná, Dept. of Forest Science, Av., Prefeito Lothário Meissner, 632, Curitiba, Paraná, 80210-170 Brazil. 2University of 
Idaho, Dept. of Natural Resources and Society, College of Natural Resources,  875 Perimeter Drive, Moscow, Idaho, 83843 USA. 3West Virginia 

University, Division of Resource Management, Davis College of Agriculture, Natural Resources & Design, 333 Evansdale Drive, Morgantown, West 
Virginia, 26505 USA. 4US Forest Service, Rocky Mountain Research Station-RMRS, 1221 South Main Street, Moscow, Idaho, 83843 USA.

Abstract
Aim of study: In this study we applied 3D point clouds generated by images obtained from an Unmanned Aerial Vehicle (UAV) to 

evaluate the uniformity of young forest stands. 
Area of study: Two commercial forest stands were selected, with two plots each. The forest species studied were Eucalyptus spp. 

and Pinus taeda L. and the trees had an age of 1.5 years.
Material and methods: The individual trees were detected based on watershed segmentation and local maxima, using the spectral 

values stored in the point cloud. After the tree detection, the heights were calculated using two approaches, in the first one using the 
Digital Surface Model (DSM) and a Digital Terrain Model, and in the second using only the DSM. We used the UAV-derived heights 
to estimate an uniformity index. 

Main results: The trees were detected with a maximum 6% of error. However, the height was underestimated in all cases, in an 
average of 1 and 0.7 m for Pinus and Eucalyptus stands. We proposed to use the models built herein to estimate tree height, but the 
regression models did not explain the variably within the data satisfactorily. Therefore, the uniformity index calculated using the direct 
UAV-height values presented results close to the field inventory, reaching better results when using the second height approach (error 
ranging 2.8-7.8%).

Research highlights: The uniformity index using the UAV-derived height from the proposed methods was close to the values 
obtained in field. We noted the potential for using UAV imagery in forest monitoring.
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Introduction

The major source of wood in Brazil is commercial tree 
plantations, responsible for 91% of the wood production 
in the country in the last year (IBGE, 2015; IBÁ, 2016). 
These plantations are mostly composed by species of 
the genus Eucalyptus and Pinus, which represents, 

respectively, 72% and 21% of the total planted area 
(IBÁ, 2016), and from the total wood production, 
around 41% is used by the pulp and paper companies 
(IBGE, 2015). According to IBÁ (2016), Brazil has 
the best productivity rate per year for Eucalyptus and 
Pinus genus compared to other countries, showing an 
average growth rate of more than 35 m3 ha-1 year-1 for 
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Eucalyptus and around 32 m3 ha-1 year-1 for Pinus. Even 
with that degree of production, there is still a need for 
improvements in the production rates. 

In order to monitor the forest production and 
development, forest inventories are performed to 
support future management planning (Scott et al., 2002; 
Köhl et al., 2006). Beside the consolidation of the forest 
inventory techniques, it is difficult to model the forest 
production, because of the variability caused by factors 
such as fertilization and water availability, which can 
affect the growing rates (Binkley et al., 2002, 2010; 
Stape et al., 2010; Otto et al., 2014). In addition, the 
stand structure also affects the productivity, although 
even in stands with the same genetic material and in the 
same environmental conditions, the trees can present 
different growing rates (Binkley et al., 2010; Stape et 
al., 2010). This information is important because if the 
stand is too heterogeneous, the final productivity will 
be lower than in a more uniform stand (Luu et al., 2013; 
Hakamada et al., 2015a), even if the dominant trees 
show larger growth. 

One of the ways to observe the uniformity in a forest 
it is using a forest uniformity index (UI), such as the 
Pvar50 (Stape et al., 2006), where the accumulated 
contribution of the smaller trees (50%) is compared 
to the total of the variable being analyzed (as volume, 
height, biomass). The Pvar50 index is important 
because it can be used to compare stands with distinct 
production capacity, as observed by Hakamada et al. 
(2015b). For a Eucalyptus spp. forest to be considered 
uniform, the Pv50 (for volume in this case) should 
occur between 37-50% (Hakamada et al., 2015b).

The Pvar50 index is usually calculated using a sample 
of the real population being analyzed, but it is still an 
expensive activity (Schreuder et al., 1993; Gibbs et 
al., 2007). A viable option is the use of remote sensing 
techniques (Holopainen & Kalliovirta, 2006; Hummel 
et al., 2011). This technology allows the collection of 
information at a low price, and in some cases provides 
more information than traditional inventories, since 
it is possible to stratify the population (McRoberts & 
Tomppo, 2007). The use of remote sensing techniques 
in forest inventories has been applied for many years, 
including the use of Digital Aerial Photography (DAP) 
(Naesset, 2002; Hirschmugl et al., 2007; Järnstedt et 
al., 2012), Airbone Laser Scannig (ALS) (Oliveira et 
al., 2012; Wallace et al., 2012; Gobakken et al., 2015), 
satellite imagery (Baltsavias et al., 2008; Gebreslasie et 
al., 2011), as well as combinations of those (St-Onge et 
al., 2004; Koukoulas & Blackburn, 2005; Bohlin et al., 
2012; Garzon-Lopez et al., 2013 ). 

The development of the Unmanned Aerial Vehicles 
(UAVs) as a tool in the inventory process has become 
an option because of three important characteristics: 

high-resolution and low cost compared to other remote 
sensing techniques, possibility of frequent monitoring, 
and automatic operation (Wallace et al., 2012; White et 
al., 2013; Salamí et al., 2014). Recent applications has 
shown the possibility of using UAV-imagery as a tool 
to detect individual trees (Hung et al., 2012; Wallace 
et al., 2016), to identify species (Puttonen et al., 2010; 
Lisein et al., 2015), to calculate heights and crown 
areas (Zarco-Tejada et al., 2014; Díaz-Varela et al., 
2015; Guerra-Hernández et al., 2016; Panagiotidis et 
al., 2016; Wallace et al., 2016; Guerra-Hernández et al., 
2017) and even to calculate the tree growth (Dempewolf 
et al., 2017; Goodbody et al., 2017; Guerra-Hernández 
et al., 2017; Jiménez-Brenes et al., 2017).

Along with the development of the UAV systems, 
one other important technology was developed in this 
same context, called Structure from Motion (SfM), 
and this is the major engine behind the UAV imagery 
processing. The SfM was presented by Ullman (1979), 
and it is a group of algorithms that recover the 3D 
position of a scene by tracking the motion of 2D features 
on subsequent images with overlap (Quan, 2010; Fisher 
et al., 2014). In addition, the SfM can also estimate 
the cameras’ calibration parameters when they are 
unknown (Szeliski, 2011; Verhoeven, 2011) allowing 
the use of consumer cameras to create 3D models.

The aim of this study was to evaluate the utility of 
using UAV data to estimate the uniformity index in Pinus 
taeda L. and Euclyptus spp. plantations, by detecting 
trees and their respective heights automatically from 
the UAV-derived 3D point cloud.

Material and methods

Study area and data collection

Study area 
In this study, we selected two commercial forest 

stands, one comprised by Pinus genus, and the 
second by Eucalyptus genus. The initial plant spacing 
established was approximately 2 m × 3 m in the Pinus 
stand, and 3 m × 4 m in the Eucalyptus stand. The 
sites were located in Telêmaco Borba municipality 
(Paraná state, Brazil), and property of the pulp and 
paper company, Klabin SA, which supported this 
study. The study area was located in a region with 
natural occurrence of “Campos Gerais” (General Open 
Fields) in the second plateau of the state (KLABIN SA, 
2016), where the Cfa climate is predominantly known 
as subtropical with hot summers (IAPAR, 2012). 
The study area has an approximate altitude of 760 m 
above sea level (Santos, 2005), and an annual average 
precipitation between 1200-1600 mm (IAPAR, 2012). 
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The stands were located in a region with flat terrain 
with slope between 0-10% (ITCG, 2006).

The trees were 1.5 years old, and in the Pinus stand 
the canopy is mostly open, with the trees’ crowns 
completely separated from the neighbor trees, while 
in the Eucalyptus stand there is partial overlap 
between trees in the same line, but in between the 
lines the ground is visible. 

We delimited two plots in each stand, randomly 
selected, with an area of 150 m2 for the P. taeda 
stand, and of 250 m2 for the Eucalyptus spp. stand. 
This plot size comprises 5 lines with approximately 
6 trees each, totaling an average of 30 trees in each 
plot. The study area location details are presented in 
Fig. 1.

Field data collection
The field data collection was done by measuring 

all trees in each plot. For each tree, the respective 
line and position in the line was recorded, and the 
height was measured using the Haglöf Electronic 
Clinometer. Table 1 presents statistical information 
about tree count and tree heights from the plots. The 

tree positions were measured using a GPS Pathfinder 
ProXRT Receiver (Trimble).

Aerial data collection
The UAV aerial data collection occurred in August 

2015, when the flights and the ground control collection 
were performed. The flights were done in subsequent 
days, with clear sky and light winds (ranging from 3 to 
3.5 m/s), around noon. We selected for both stands an 
overlap of 80% lateral and 85% longitudinal, and we 
covered the same area twice using perpendicular flight 
lines. The flight height was 150 meters, which allowed 
a Ground Sample Distance (GSD) of 5 cm to be 
obtained. The flights covered a total area of 75 ha in the 
Eucalyptus spp. stand, requiring two flights of 28 min 
each to cover the area with the selected options. In the 
Pinus stand we covered an area of 40 ha in one flight of 
33 min. The total images collected for each flight was 
380 in the Pinus stand, and 712 in the Eucalyptus stand. 
The flight plans were created and monitored using 
eMotion 2 (from Sensefly), and all images took were 
used in the processing, since the software controlled the 
image acquisition to cover only our interest area. 

Figure 1. Study area location and plot details. (a.1, a.2) Pinus stand plots. (b.1, b.2) Eucalyptus 
stand plots.

Table 1. Statistical information about tree number and tree heights in Pinus 
and Eucalyptus plots.

Plot
Number of trees Height (m)

Planted Survived Min. Max. Mean (SD)

PIN 1 31 31 2.30 3.30 2.72 (0.05)

PIN 2 30 29 0.90 3.10 2.51 (0.09)

EUC 1 32 31 1.60 3.90 3.23 (0.10)

EUC 2 29 29 2.60 4.10 3.60 (0.08)
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The UAV data acquisition was done using the UAV 
Ebee-Ag (Sensefly company), with a Near Infrared 
Sensor camera (NIR) Canon PowerShot S110 (Canon 
company). The camera had 12 MP of resolution, the 
sensor size is 7.44 × 5.58 mm, and the focal distance 
is 4.5 mm.

Four ground control points (GCP) were positioned 
in each plot, located in the four corners, using a target 
made of paper. The paper used was white, had a square 
shape with 1.8 m per side, and we painted an X using 
black paint in the center of the paper, showing the exact 
center of the target. The ground control coordinates 
were collected using a GPS Pathfinder ProXRT 
Receiver, and the accuracy of the ground control 
points considering the mean error was: X = 0.7 ± σX 
0.27; Y = 0.7 ± σY 0.27; Z = 1.1 ± σZ 0.3. This system, 
in normal conditions, should provide solutions with 
submeter (+ 1 ppm) accuracy. The low accuracy in the 
ground control collection was result from problems 
in the collection in the day of the flights. The GPS 
could not find an adequate solution, and we believed 
this was because the area is remote, and the signal is 
affected by the network signal and presence of trees. 

The image processing was done with the Postflight 
Terra 3D software (vers. 3.4.46), in which the 
images were externally and internally oriented 
using homologous points found in the images. In the 
Postflight, the processing is split in 3 major steps, 
the first where the images are calibrated internal 
and externally. In the first step, we selected full 
image scale, automatic number of keypoints, and 
alternative calibration (optimize all internal and 
external parameters). In the second step, for a dense 
point cloud, we selected an optimal point density, ½ 
image scale, and 3 minimum matches for point. In 
the last step we generated the DSM and orthomosaic. 
For the DSM, we selected the option to filter noise 
points, to smooth the DSM using a sharp model, and 
to interpolate the values using the Inverse Distance 
Weighting. The resolution was set as automatic for 
both DSM and orthomosaic. The image coordinates 
and the ground control points were manually inserted 
after the first step, and the project was reoptimized to 
use the coordinates as reference. 

The processing took approximately 3.5 and 10 hours 
for the Pinus and Eucalyptus stands, respectively. 
The geolocation accuracy was calculated using the 
position of the ground control, and we obtained an 
absolute RMSE of 0.46 m, 1.23 m and 1.06 m on X, Y 
and Z coordinates in the Pinus stand, respectively, and 
1.39 m, 2.47 m and 0.74 m in the Eucalyptus stand. 

After the orientation process, we generated a 3D 
dense point cloud, an orthomosaic, and a Digital 
Surface Model (DSM). Research has shown that in 

some cases it is possible to classify the 3D point 
cloud and select only the points on the ground and to 
use these points to generate a Digital Terrain Model 
(DTM). The DTM generation is still limited in the 
photogrammetric software because the point cloud 
generated only represents the surface of the objects. 
In this work, we performed the analysis based only 
on the UAV-derived point cloud.

Data processing 

The data processing was done applying two 
different methods, involving three major steps: 
ground point classification, tree detection, and tree 
heights calculation. The first step is to classify the 
ground points in the dense point cloud obtained from 
the UAV imagery processing and generate a DSM 
and DTM from these points. This step was only 
applied on Method 1. The second step is to detect the 
trees’ positions using the spectral information stored 
in the point cloud, and this step is common in both 
methods, so the tree detection is the same in both 
cases. The last step is to calculate the heights, and this 
is where the DTM and DSM from the first step will 
be used in the Method 1, while in Method 2 we used 
the point cloud (with no classification) to generate the 
higher and lowest elevations values and calculate the 
heights. More details are presented in the next sub-
sections. 

The workflow inputs are presented in Fig. 2. The 
ground point classification, as well as the DTM 
and DSM generation for Method 1 were processed 
separately. The processing was done for one plot at 
the time. The plot’s shape was used to clip the point 
cloud and a buffer of 10 m was included for all the 
plots to avoid the edge effect. The workflow applied 
is presented in Fig. 3. 

Ground point classification 
The ground point classification was done using the 

software SAGA (System for Automated Geoscientific 
Analyses) vers. 2.2 (Conrad et al., 2015). The process 
to classify the points and generate the DTM and DSM 
was based on the workflow created by Wichmann et 
al. (2013), to process Lidar data in SAGA GIS. 

In the workflow created by Wichmann et al. (2013), 
the point cloud is converted to two grid format files, 
one with the highest elevations (the DSM), and one 
with the lower elevations. The grid with the lower 
elevations is filtered to remove the non-ground points, 
using the DTM-filter (slope-based) algorithm based 
in Vosselman (2000). We selected the parameters 
of slope (s) and search radius (r) as 5 and 3 m to 
execute this tool. The points classified as ground 
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were interpolated using the Multilevel B-Spline 
Interpolation (from grid) tool, created by Lee et al. 
(1997). We used a matrix with level 11. The result 
was smoothed using the Multi Direction Lee Filter 
(Lee, 1980), using 1 and 2 as absolute and relative 
error respectively. In all the steps performed in the 
SAGA GIS, we used a cell size of 0.5 m followed 
from LIDAR research efforts (Höfle et al., 2012).

A Canopy Height Model (CHM) was also generated 
using the Grid Difference (Conrad et al., 2015) tool, 
in which we performed a mathematical operation of 
subtraction to calculate the difference between the 
DSM and the DTM. The CHM was not used in the 
tree detection model, but was considered to analyze 
the relationship between the DSM and DTM. 

Tree detection and height calculation 
The process to detect the trees and calculate the 

heights was done using the two workflows created 
in ArcGIS 10.4. First, we present the tree detection, 
since it is the same for both methods, and later we 
describe the calculation of the heights. 

― Tree detection. The tree detection was done 
using existing hydrological analysis tools developed 
to detect watersheds. This method, called watershed 
segmentation, is commonly used to delineate tree 
crowns, because by inverting the surface model of a 
forest, the crown areas are similar to small watersheds 
(Panagiotidis et al., 2016). Usually, the watershed 
segmentation is applied in a CHM derived from 
Lidar, but in this case, we decided to use the spectral 

Figure 2. Input parameters for both methods to detect and calculate tree 
heights using UAV point clouds. DSM: Digital Surface Model. DTM: Digital 
Terrain Model.

Figure 3. Processing workflow for Methods 1 and 2. DSM: Digital Surface Model. DTM: Digital Terrain 
Model. CHM: Canopy Height Model. LAS: Laser file format. SAGA: System for Automated Geoscientific 
Analyses. Min: Minimum value. Max: Maximum value. Z: Elevation.
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information (RGB values) stored in the 3D point 
cloud.

The first step for the tree detection was the selection 
of the point cloud (.las file), obtained from the 
photogrammetric processing. An image was generated 
from the point cloud using the Las dataset to Raster 
tool, by selecting the option to interpolate the RGB 
values. The image created was multiplied by 1 or -1, 
using the Times tool. The image should be multiplied 
by 1 when the digital value (RGB values) on the trees 
positions is smaller than the digital value of the ground. 
When the digital value in the trees positions is higher 
than the soil, the image needs be multiplied by -1. To 
decide the value, we checked the digital values in the 
point cloud prior to the detection, and we inserted the 
right value in the workflow. This process generated an 
inverted image.

In the sequence, the focal statistics tool was applied 
to highlight the lowest positions. For that we used a 
circular search, with 2 cells radius, and we selected 
as output the minimum values. This process helps 
to smooth small differences in color within the same 
crown. The image smoothed was used to calculate the 
flow direction, using the Flow direction tool, and this 
result was applied in the Basin tool, which delineated 
watersheds in the flow direction file. In this case, the 
watersheds are tree areas; it includes the tree crown as 
well some parts of the ground surrounding each tree. 
We calculated the area of each tree area, and excluded 
the areas smaller than 3 m2. 

The position of each tree was calculated by searching 
the lowest value in the inverted image within each tree 
area. To finalize the detection, we included the number 
of each tree area in the tree detected points (ID number), 
using the tool Intersect, and this number was used in the 
height calculation, as described in the next subsection.

The field measured trees were manually plotted as 
shapefiles in the image generated from the RGB values 
in the point cloud. For this task we considered the 
information collected in field, as line and position of 
each tree in the line. Each tree received an ID number in 
the field, and this number was included in the shapefile. 

After the detection, we made the correspondence of 
each detected tree with the respective field measured 
tree. In this step we also identified the false positive 
and false negative trees. The correspondence was 
done using a spatial join between the tree areas (the 
segmentation output in shapefile) with the manually 
plotted trees. Using the spatial join, each tree area 
received the identification (ID) number of the manually 
plotted tree. In the sequence, we made an interception 
of these tree areas (already with the ID number) with 
the detected trees. With this process, each detected tree 
that does not have the ID number of the field tree is 

a false positive. On the other hand, if a detected tree 
has two ID numbers, it means that two tree crowns are 
merged in the segmentation, therefore, one tree was 
not detected. In this case, we kept the ID of the closest 
field tree, and the missing tree was considered a false 
negative. 

The tree detection errors were calculated using the 
following equations: 

where FP error (%) = percentage of false positive 
detected trees; FN error (%) = percentage of false 
negative detected trees; FN = total of false negative 
detected trees; FP = total of false positive detected 
trees; TF = total of trees measured in field.

― Height calculation – Method 1. In Method 1 we 
selected the DSM and DTM (generated using SAGA) 
as input in the workflow, as well as the point cloud 
needed to detect the trees positions. In this method, 
after the tree detection, the value Z of each tree position 
in the DTM was calculated using the tool Add Surface 
Information. We calculated the tree top as the maximum 
Z value for each tree area in the DSM. The height was 
calculated as being the subtraction of the Z in the DSM 
and the Z in the DTM for each tree area.

― Height calculation – Method 2. The tree height 
calculation in Method 2 was similar to Method 1, but 
instead of using the DSM and DTM generated from 
SAGA, we extracted the necessary values from the 
point cloud. To accomplish this, the point cloud was 
transformed in two raster files, one with the lowest 
elevation values for cell, and the other with the highest 
elevation values. These files were created using the Las 
dataset to Raster tool, selecting the Elevation as field 
to be interpolated, and selecting the cell assignment 
as Minimum and Maximum. The process was done 
using the tool twice, one time to obtain the minimum 
values (Grid Minimum), and in the other to obtain the 
maximum values (Grid Maximum). 

The height was calculated by searching the elevation 
value (Z maximum) in the Grid Maximum for each 
tree area, using the Add Surface Information tool. 
Next, we searched for the minimum value in the Grid 
Minimum for each tree area (Z minimum), using the 
Zonal statistics tool, and keeping the values for each 
tree area, considering the ID number. The difference 
between the Z maximum and Z minimum for the same 
tree area was considered the tree height. Details about 
the difference on tree height calculation from both 
methods are presented in Fig. 4. 
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In general, the difference between the methods is 
that in Method 2 we did not classify the point cloud, 
therefore we did not have a DTM. To be able to calculate 
the tree height without the DTM, we searched the 
minimum elevation values within the same tree area, 
and we expected that the results of this method were 
similar to the method using the DTM, considering that 
the terrain is relatively flat and there is ground visible 
between the trees. 

The UAV-height values for both methods were 
compared to the field values, applying an Analysis of 
variance (ANOVA), and a Tukey Significant Difference 
test, both with 95% confidence level.

Tree height estimation 
Tree height was estimated using linear regression 

modeling in the R (R Core Team, 2016). We used the 
UAV-derived tree height (UAV-height) as a predictor of 
field tree heights (field-H). Considering the regression 
assumptions (linearity, independence, homoscedasticity 
of error, and normality distribution of the error) we fit 
a linear regression model. The models were created for 
each stand, using the values of the two plots in each.

Uniformity index estimation
The stand uniformity was estimated using the PH350 

index, which is a variation of the PV50, usually applied 
to evaluate uniformity in plantations. According to 
Hakamada (2012), the PH350 presents a high correlation 
with the PV50, so it can be used in young stands, when 
it is not possible to obtain the DBH (Diameter at Breast 
Height -1.3 m).

The PH350 was obtained according to the following 
equation:

 

where PH350 = accumulated participation of the 50% 
smallest trees heights; H3 = cubic power of the ith tree 
height; n = sorted tree number (smallest to largest). 

The PH350 index was calculated using the field 
data, the calculated heights (from the two methods 
tested), and the estimated heights (from the mathematic 
equations). In the cases where the methods identified 
a nonexistent tree (a commission error), or did not 
detect one or more trees (omission error), we calculated 
the PH350 considering the number of detected trees. 
This was done since in a real application it will not be 
possible to detect if these errors happen. In the PH350 
the real number of trees was considered from the field 
data.

Results

Ground point classification

The statistical analysis of the generated products from 
the point cloud classification in SAGA is presented in 
Table 2, as well the parameters observed in the original 
point cloud. As detailed in the data processing, this 
process was only applied in Method 1.

The DSM values correspond to the maximum 
values observed in the point cloud, while the DTM 
values correspond to the minimum values, as ex
pected. The Pinus and Eucalyptus stands have 
distinct characteristics regarding the density of points 
generated, which is much higher in the Eucalyptus 
stand. The maximum values in the CHM (i.e. the tree 
tops) also vary between the two stands. We found 
maximum values of 3.10-4.42 m in the Pinus stand, 
and 4.66-6.24 m in the Eucalyptus stand. 

In Fig. 5 the digital models (DSM, DTM and CHM) 
are presented for each plot. Close to the edges of the 

Figure 4. Difference in tree height calculation (UAV-height) between Method 1 and 2. DSM: Digital Surface Model. 
DTM: Digital Terrain Model.
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Table 2. Basic information about the files generated from the point cloud classification, applied in Method 1. 

File 1
Z min. Z max. Z av. Z min. Z max. Z av.

PIN 1 PIN 2

DSM 819.15 825.55 822.35 822.99 829.67 826.33

Ground points 818.56 823.12 820.84 822.54 826.80 824.67

Objects 819.01 824.16 821.59 823.01 827.61 825.31

DTM 818.33 823.67 821.00 822.75 827.19 824.97

CHM 0.03 4.42 2.23 -0.03 3.10 1.54

Point cloud 818.51 825.55 822.03 822.54 829.67 826.11

Point count (total / points/m2) 130,680 / 95.35 146,167 / 98.45
EUC 1 EUC 2

DSM 730.27 736.74 733.51 722.33 728.40 725.37

Ground points 729.39 734.04 731.72 721.31 725.20 723.26

Objects 729.91 734.99 732.45 721.82 726.34 724.08

DTM 725.41 734.68 730.05 720.45 725.63 723.04

CHM -0.03 6.24 3.11 0.17 4.66 2.42

Point cloud 729.39 736.74 733.07 721.31 728.40 724.85

Point count (total / points/m2) 308,929 / 150.94 433,689 / 223.46
1 DSM = digital surface model; Ground points = all points classified as being on the ground; Objects = all the points classified as not 
being part of the ground, but being any other structure as trees; DTM = digital terrain model; CHM = canopy height model. Point cloud 
= the original point cloud considering all the point classes. Z min., Z max. and Z av. = minimum, maximum and average elevation 
values, respectively. 

Figure 5. Digital models generated using the point cloud classification in SAGA GIS for Method 1. 
EUC: Eucalyptus spp. trees. PIN: Pinus taeda trees. a), b), c) and d) are, respectively, the plots PIN 
1, PIN 2, EUC 1 and EUC 2. 1), 2) and 3) are, respectively, the DSM, DTM and CHM of each plot.



Forest uniformity from unmanned aerial vehicle data

Forest Systems August 2018 • Volume 27 • Issue 2 • e005

9

plots, we observed some altitude values extremely 
low or high in the DTM. These values are errors and 
happen because the algorithm uses a neighborhood 
relationship. This situation was expected, and it did 
not interfere with the rest of the processing since we 
included a margin of a 10 m buffer.

In Table 3 and Fig. 6 we can observe the 
relationship between altitude values (Z) calculated 
in the DTMs and observed in the field survey (GPS). 
We can observe a strong relationship for both plots 
(Fig. 6), even if the error presented an average value 
of 1.07 m and 0.87 m for Pinus and Eucalyptus 
stands respectively. The values from the Eucalyptus 
stand in the DTM were closer to the field data than 
in the Pinus stand. 

Tree detection

The process applied to detect the trees in the 
plots was the same for both Method 1 and Method 
2, therefore the detection results are the same. The 
results are presented in Fig. 7, as well as in Table 4.

In general, we noticed that almost all the trees 
were detected using the proposed method, showing 
only error between 1-2 trees per plot (maximum 
error 6.45%). We also noticed that in the Pinus plots 
the trees’ positions are dislocated from the tree top, 
and the trees’ positions were calculated as being in 
the tree shadow. Besides the displacement in the tree 
position, this did not affect the height results, since 
the heights are calculated using the maximum value 
in the DSM of each tree area. 

Regression models and tree height estimative

The tree height was estimated using UAV-
height (from Method 1 and Method 2) and field 
measurements of tree height. The UAV-heights 
are presented in Table 5. We can observe that the 

Eucalyptus spp. trees (EUC) are taller than the 
Pinus taeda (PIN), reaching 4.10 m of maximum 
height, while the Pinus taeda have a maximum of 
3.30 m. Considering the ANOVA and Tukey tests, 
both methods are statistically different to the field 
measurements.

We observed that in all plots, the UAV-derived 
height values underestimated the field tree heights 
in most of the cases. Therefore, we decided to try 
to model the field tree height instead of using the 
direct UAV extracted height as the true tree height. 
The relationship between UAV and field height, for 
both stands and methods, is presented in Fig. 8. The 
regression model showed no statistically significant 
correlation (r of 0.23 and 0.12 for Methods 1 and 
2, respectively) for the Pinus stand, therefore the 
regression was not able to explain the variations (R2 
of 0.04 and 0.00 for Methods 1 and 2, respectively). 

In the Eucalypus stand the results are better, 
since the correlations between the UAV-height and 
measured height were statistically significant, and 
classified as moderate (r=0.54) or strong (r=0.71), 
according to Andriotti (2003). Therefore, the 
regression models were only able to explain part of the 
variation on the data, obtaining R2 values of 0.37 and 
0.49 for Methods 1 and 2, respectively. Considering 
the regression quality, we decided to use the direct 
UAV-height to calculate the uniformity index. 

Table 3. DTM validation from GCPs on Pinus and 
Eucalyptus stands. 
Metric (n=8) Pinus stand Eucalyptus stand
Mean difference (m) 1.07 0.87
Standard deviation of 
difference (m)

0.19 0.15

Median difference (m) 1.15 0.94
Minimum difference (m) 0.41 0.34
Maximum difference (m) 1.89 1.35

Figure 6. Validation of DTM values using the GCPs coordinates for Pinus (a) and Eucalyptus (b) stands.
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Figure 7. Automatically detected and field measured trees. EUC: Eucalyptus spp. trees. 
PIN: Pinus taeda trees.

Table 4. Detected and field measured trees. Values between parenthesis are the % variation based in 
the total field measured trees.

Plot 1 Total - field Total of detected trees False negative detected False positive detected

PIN 1 31 29 2 (6.45%) 0

PIN 2 29 28 1 (3.44%) 0

EUC 1 31 32 1 (3.22%) 2 (6.25%)

EUC 2 29 29 0 (0%) 0
1 PIN = Pinus taeda trees. EUC = Eucalyptus spp. trees.

Table 5. Tree heights UAV-height and filed measured values. 
Stand Measurement Mean SD Minimum Maximum Samples (trees)

Eucalyptus Field 3.41a 0.53 1.60 4.10 60
Method 1 2.45c 0.59 1.02 3.44 61
Method 2 3.15b 0.63 1.40 4.22 61

Pinus Field 2.62a 0.39 0.90 3.30 60
Method 1 1.73c 0.25 1.26 2.37 57
Method 2 2.32b 0.32 1.36 2.98 57

SD = standard deviation. Different letters indicate significant differences obtained through Tukey test.
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Figure 8. Relationship between UAV-height, field-height and predicted height, in Pinus (a) 
and Eucalyptus (b) stands for Methods 1 (.1) and 2 (.2).

Table 6. PH350 uniformity index values. Values between 
parentheses are the error (%)

Plot 1 Field UAV - Method 1 UAV - Method 2

PIN 1 0.4051 0.4135 (-2.07) 0.3938 (2.79)

PIN 2 0.3618 0.2817 (22.14) 0.3418 (5.53)

EUC 1 0.3460 0.2883 (16.68) 0.3188 (7.86)

EUC 2 0.3513 0.3210 (8.63) 0.3319 (5.52)
1 PIN = Pinus taeda trees. EUC = Eucalyptus spp. trees.

Uniformity index – PH350

The calculated PH350 values using the field measu
rements (Field-height), and the values obtained from 
the images processing (UAV-height), for the two pro
cessing methods, are presented in Table 6.

The PH350 calculated from Method 2 presented better 
results, with errors ranging between 2.79-7.86%, while 
the Method 1 had large errors, mostly in the plots PIN 2 
and EUC 1. However, the results in the other two plots 
were satisfactory (Table 5). With the exception of the 
Method 1 in the plot PIN 1, and the PH350 calculated 
by the method underestimated the PH350 obtained in the 
field. The field-PH350 in all the plots are between the 

interval of 37-50% delimited by Hakamada et al. (2015b) 
as values where the stands can be considered uniform. 

Discussion

Considering the tree detection results observed in 
this study, it is possible to conclude the importance 
of the UAV technology in monitoring young forest 
stands. The UAV data collected using passive 
sensors was capable of automatically measure the 
trees' positions and heigths allowing the reduction 
of the cost of traditional forest inventories or Lidar 
surveys (White et al., 2013; Hernández-Clemente 
et al., 2014). The workflow created can be easily 
applied in other early stands to identify possible high 
rates of variation in the growing among plants in the 
stands. This is important because when the plants are 
still young, the responses of fertilization and other 
silvicultural practices are more pronounced since 
tree growth declines with age (Borders et al., 2004; 
Martínez-Vilalta et al., 2007). In cases where growth 
is extremely irregular the replacement of the current 
species for another variety that is more productive can 
be a viable option. 
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Even with the tree detection being able to reach 
almost 100% of the trees, it is still important to 
consider the potential problems with detection. One 
of these problems is the presence of shadows in the 
images which can create an error in the tree’s position. 
Occlusions caused by shadows could be problematic 
for generation of image-based point clouds, especially 
in dense forest canopies (Baltsavias et al., 2008; Ke 
et al., 2010; Laliberte et al., 2010; White et al., 2013; 
Dandois et al., 2015). This problem can be minimized 
in some cases by image collection in specific weather 
conditions (White et al., 2013; Dandois et al., 2015; 
Näsi et al., 2015).

Our results about tree detection are similar to 
observations regarding adult Eucalyptus trees (Walla
ce et al., 2016). Díaz-Varela et al. (2015) found com
parable results in individual and hedgerow olive trees 
using UAV data. Using UAVs is close and/or more 
accurate than detection of trees in high resolution 
satellite images (Zhou et al., 2013) and traditional 
aerial flights (Hirschmugl et al., 2007; St-Onge et 
al., 2015; Tanhuanpää et al., 2016). In our results we 
also observed some commission errors (when objects 
that are not trees are detected as if they are), and that 
is possibly a reflection of the fine resolution used, as 
observed by Ke & Quackenbush (2011). 

In this study, we were also able to observe the 
possibility of DTM generation from the UAV data and 
calculate tree heights. Even without the availability 
of a DTM source to use for comparison, we believe 
that the DTM generation is possible in the conditions 
as presented where the tree canopies are not closed, 
as observed by Guerra-Hernández et al. (2016, 2017) 
and Jensen & Mathews (2016). The visual analysis of 
the DSM and DTM generated and values observed in 
other studies using Lidar and GPS values as reference, 
as in Dandois & Ellis (2013), Zahawi et al. (2015), 
Jensen & Mathews (2016) and Wallace et al. (2016), 
helped us reach that conclusion. Jensen & Mathews 
(2016) observed that the DTM derived of UAV images 
overestimated the ground height compared to Lidar 
derived DTM, but was able to calculate tree heights 
with a similar accuracy as those obtained with Lidar 
data. 

The calculated tree height presented good correlation 
with the field measurements only for the Eucalyptus 
spp. stand, while in the Pinus taeda correlation was 
not significant. The result for the Eucalyptus spp. stand 
was similar to observations made by  Dandois & Ellis 
(2013), Hernández-Clemente et al. (2014) and Díaz-
Varela et al. (2015), but below the values observed 
by Guerra-Hernández et al. (2016), Panagiotidis et al. 
(2016), Wallace et al. (2016) and Guerra-Hernández et 
al. (2017). In both stands, the tree height calculated from 

the UAV data underestimated the field measured values, 
especially for coniferous trees, as usually observed 
in photogrammetric measurements from traditional 
DAP and photogrammetric methods (Naesset, 2002; 
Korpela, 2004; St-Onge et al., 2004; Tanhuanpää et al., 
2016) and from UAV-imagery and SfM (Díaz-Varela 
et al., 2015; Cunliffe et al., 2016; Panagiotidis et al., 
2016).

One possible explanation for the problems with the 
height calculation is based on the theory presented by 
Lisein et al. (2013) and also observed by Díaz-Varela 
et al. (2015). They noted that the CHMs derived from 
images underestimate heights (compared to Lidar CHM) 
more frequently in areas with object discontinuities 
such as isolated trees. Lisein et al. (2013) also observed 
specific problems in coniferous stands with low density. 
In our case, we observed tree height underestimation in 
both stands and since the trees in both cases are isolated 
(because the canopies are discontinuous), we believe 
that the CHM smoothed the tree top heights. Another 
point that can be observed is presented by Zahawi et 
al. (2015), which observed high correlation between 
measured and UAV estimated heights in trees in 
general, but found weak correlation in small trees (1.5-
4 m), possibly due to the small height variance as well 
as to the altitude errors in the DTM in the low trees’ 
positions according to the authors. In our database, the 
Pinus taeda stand presents smaller trees and the point 
cloud density in that stand is considerably smaller than 
in the Eucalyptus spp. stand.

Another problem that needs to be addressed is the 
low accuracy of the GCP used in this study, considering 
that the equipment used should provide a better solu
tion, and the errors in the geolocation of the UAV pro
ducts are probably related to the poor GCP accuracy. 
Our geolocation errors, with RMSE ranging from 
0.46-2.47 m are much large than the values observed 
on other studies using also an eBee UAV and similar 
topography conditions, as Guerra-Hernández et al. 
(2017) that observed a RMSE <5 cm with 5 GCPs, and 
< 2 cm with 10 GCPs, and the mean error of 2 cm using 
6 GCPs observed by Birdal et al. (2017). Our RMSE 
values are also higher than observed for authors using 
rotary wings UAVs, as 0.31 m of mean error using 8 
GCPs observed by Jensen & Mathews (2016), and <7 
cm using 9 GCPs observed by Tomaštík et al. (2017). 
Also, it is possible that the location of our GCPs was not 
optimal, since they were placed in the corner of the plots 
and did not covered the total area of the stand. The low 
geolocation accuracy is believed to be one of the major 
issues in our measurements, since authors observed the 
necessity to employ correct control points (considering 
number, positioning and adequate equipment) to 
transform the relative reference from the images to a 
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metric coordinate system (Westoby et al., 2012; Nex & 
Remondino, 2014; Mesas-Carrascosa et al., 2015, 2016; 
Carvajal-Ramírez et al., 2016; Gašparović et al., 2017; 
Raczynski, 2017; Tomaštík et al., 2017).

One interesting point to note is the improved result 
from Method 2 in comparison with Method 1. In Method 
1 we used a DTM as a source of the minimum tree height, 
while in Method 2 we searched for the smallest elevation 
inside the delineated tree crown, which was found to 
be better. This could result from an overestimation of 
the terrain in the DTM, as observed by Dandois & Ellis 
(2013), Jensen & Mathews (2016) and Guerra-Hernández 
et al. (2017), or the result of the lack of ground points 
around the trees’ canopies. 

The lack of points under canopy results in an 
underestimation of the terrain, as observed by Wallace et 
al. (2016), but it is possible that in the present case some 
points close to the trees, such as leaves in the ground, 
could lead the algorithm to overestimate the terrain 
under the canopies. According to Cunliffe et al. (2016) 
that can happen because photogrammetric techniques 
have problems modeling the extremity of the plants. 
The authors proposed to use other metrics besides the 
maximum height as a predictor of tree heights. Similar 
results, in the metric selection, were observed by Lisein 
et al. (2013), Hernández-Clemente et al. (2014), Díaz-
Varela et al. (2015), Zahawi et al. (2015) and Panagiotidis 
et al. (2016). Hernández-Clemente et al. (2014) observed 
that the 90th percentile of the height presented a better 
prediction of the total tree height, reaching an R2 value of 
0.67, compared to the R2 of 0.50 reached by the maximum 
height. 

The uniformity index calculated for the plots using the 
calculated heights showed good results, thus it is possible 
that the errors in the measurements are mostly punctual 
variations. It is difficult to use a model for individual trees, 
but the results are satisfactory in the plot level. In a similar 
situation, Zucon et al. (2015) applied UAV imagery to 
calculate the Pvar50 in a young Eucalyptus stand using 
the crown area and observed good results despite having 
some problems in the correct crown delineation. 

Considering the presented results, there is a large 
potential for the application of UAV data in forest 
growth monitoring that have been demonstrated 
by a few recent UAV studies in different forest 
ecosystems (Dempewolf et al., 2017; Goodbody et 
al., 2017; Guerra-Hernández et al., 2017). Our results 
are satisfactory with consideration of the existing 
limitations of this technology, as the dependence of 
another source for terrain elevation in closed vegetation 
(Mathews & Jensen, 2013; Wallace et al. 2016), as well 
the lack of methods for DTM generation specific for 
UAV imagery, where there is not an uniform point 
distribution (Dandois & Ellis, 2013).

Other limitations that should be considered are the 
importance of the flying conditions and the camera’s 
quality. The camera quality in low-cost UAV is usually 
poor and the cameras are not calibrated, which can cause 
a great amount of distortion in the images and affect the 
accuracy of the products (Salamí et al., 2014; Puliti et 
al., 2015). The knowledge of the distortions caused can 
be corrected in many cases, or can be compensated by 
the advantages, such as the high resolution, offered by 
the UAV technology (Whitehead & Hugenholtz, 2014). 
The aerial data acquisition requires more control since 
it is important that the flights are always carried out in 
conditions of equal luminosity and with higher overlaps, 
including the need to fly more than the selected area 
to avoid edge distortions (Mathews & Jensen, 2013; 
Whitehead & Hugenholtz, 2014; Dandois et al., 2015). 

Conclusions

In this study, we observed the potential of point 
clouds derived from UAV imagery to monitor the 
growing uniformity in forest stands using a uniformity 
index based on the trees’ heights. Our results suggest 
that this technology can be applied with good results. 

Preferred results were observed in tree detection, 
but some problems remained in estimating the heights. 
Underestimation of the tree heights was observed in all 
evaluated situations, with distinct results in the stands, 
leading to the conclusion that the results cannot be 
generalized without caution, since differences in the 
tree stand characteristics leads to different results on the 
uniformity index.

The DTM generation using the UAV-derived point 
cloud was also evaluated and the results are promising. 
Based on our results and the review of the literature, 
we believe DTM generation is possible in some specific 
situations, but in many cases, that is not possible 
with acceptable error tolerances. In these cases, the 
use of UAV to calculate heights is still dependent on 
the availability of some terrain model from another 
source. We suggest for future studies a more complete 
evaluation of the stand characteristic to be performed 
for the tree height estimation since we observed large 
differences in the stands. 

We also suggest that this process could have better 
results if more accurate and maybe a larger number of 
ground control were applied, since the low accuracy of 
the GCP was probably one of the major sources of errors 
in the tree heights. Also, improvements in the image 
processing could also lead to better results, mostly 
considering the availability of new software and tools 
in the existing photogrammetric software to classify 
ground points. 
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