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Abstract

Aim of study: The aim of this study was performance of four non-parametric algorithms including the £&-NN, SVR,
RF and ANN to estimate forest volume and basal area attributes using combination of Aerial Laser Scanner and Landsat-
TM data.

Area of study: Data in small part of a mixed managed forest in the Waldkirch region, Germany.

Material and methods: The volume/ha and basal area/ha in the 411 circular plots were estimated based on DBH and
height of trees using volume functions of study area. The low density ALS raw data as first and last pulses were prepared
and automatically classified into vegetation and ground returns to generate two fine resolution digital terrain and
surface models after noise removing. Plot-based height and density metrics were extracted from ALS data and used
both separated and combined with orthorectified and processed TM bands. The algorithms implemented with different
options including A-NN with different distance measures, SVR with the best regularized parameters for four kernel
types, RF with regularized decision tree parameters and ANN with different types of networks. The algorithm
performances were validated using computing absolute and percentage RMSe and bias on unused test samples.

Main results: Results showed that among four methods, SVR using the RBF kernel could better estimate volume/ha
with lower RMSe and bias (156.02 m?® ha™! and 0.48, respectively) compared to others. In basal area/ha, ~-NN could
generate results with similar RMSe (11.79 m® ha™!) but unbiased (0.03) compared to SVR with RMSe of 11.55 m* ha™!
but slightly biased (—1.04).

Research highlights: Results exposed that combining Lidar with TM data could improve estimations compared to

using only Lidar or TM data.
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Introduction

Optical satellite imagery usually presents two-di-
mensional spectral information and reflectance respon-
ses of a canopy cover’s surface. However, LIDAR data
from an airborne laser scanner (ALS) provides semi
three-dimensional data set relating to canopy cover.
From the early 1980s so far, application of ALS-LiDAR
data for forest attribute estimation has been tested in
different forest areas in the world and in the stand, plot
and tree levels. Since LiDAR data have tested for re-
trieval of forest structure biophysical data such as ca-
nopy or tree height (Naesset, 2004; Andersen et al., 2003;
Maltamo et al., 2006a; Naesset, 1997; Chen and Hay,
2011), basal area/ha, volume/ha (Nilsson, 1996; Nelson
etal., 1997; Holmgren, 2004) and biomass (Lefsky et
al., 2001; Packalén and Maltamo, 2007; Latifi et al.,
2010). There are many studies that have proved the
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possibility of making accurate estimates of forest attri-
butes using only Lidar data (Wulder, 1998; Lefsky et
al., 1999; Naesset, 2002; Lim et al., 2003; Holmgren,
2004; Maltamo ef al., 2006a,b; Dalponte ef al., 2009;
Breidenbach et al., 2010). However, many studies, have
demonstrated that ALS data were not suitable to esti-
mate forest attributes and classifications when used
alone (Packalén, 2009; Latifi et al., 2010; Chen and Hay,
2011). Therefore, it can be assumed that a combination
of optical data and LiDAR data would be a successful
combination for estimating forest attributes (Packalén,
2009; Straub et al., 2010).

Forest attribute estimations using integration of
LiDAR and optical remote sensing data can be tradi-
tionally done using regression approaches. The regression
approaches can be generally divided into two groups:
parametric and non-parametric approaches. For forest
variables estimations using integration of LiDAR and
optical data, some researches has been applied the
parametric approaches (Chen and Hay, 2011; Popescu
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and Wynne, 2004; He et al., 2011; Lu et al., 2012), and
some others applied non-parametric approaches (Chen
et al.,, 2012; Mclnerney et al., 2010; Stojanova et al.,
2010). The multiple linear or non-linear regressions
are typical parametric approaches which define rela-
tionships between forest dependents variables such as
tree volume and image spectral metrics and height and
intensity metrics derived from LiDAR data. Although
the parametric approaches have been widely used and
easy to interpret, these empirical approaches often do
not have the ability to characterize forest complexity,
especially at fine spatial scales (Chen et al., 2010) or
in the mountainous and natural mixed deciduous fo-
rests. In addition, the main advantages of non-para-
metric methods are that they do not rely on any proba-
bility distribution. In parametric models, often unbiased
estimators for the expected value and the parameters
exist. However, parametric regression models may
easily fail with respect to the practitioner’s demand for
simultaneous estimations of several response variables.
This is often due to strong restrictions in model validity
and as a large number of response variables may result
in a small number of degrees of freedom (Breidenbach
etal., 2010).

Recently, the use of non-parametric algorithms with
different theories have been explored for estimation of
forest attributes due to their advantages algorithms
such as flexibility and ability to describe non-linear
dependencies (Franco-Lopez et al., 2001; Makela and
Pekkarinen, 2004; Hyvdnen, 2007; Sironen et al.,
2010). The non-parametric machine learning techni-
ques have demonstrated superior performances over
classic regression analysis for estimating forest attri-
butes (Latifi et al., 2010; Chen and Hay, 2011). Machine-
learning algorithms consist of groups of data mining
and non-parametric-based methods with different
bases. These algorithms can be grouped into distance-
based algorithms such as; k nearest neighbor (k-NN)
and its variants; tree-structured or decision tree algo-
rithms such as random forest (RF); statistical learning
theory based algorithms such as support vector ma-
chine regression (SVR) and artificial intelligent based
algorithms such as artificial neural network (ANN).
Each of these algorithms has advantages and disad-
vantages in terms of their inherent capabilities and
performances. So, regarding to their different theories,
investigation on capability of performances of these
algorithms can be a useful way to find the best algo-
rithm to quantify forest attributes using different based
remote sensing data.

Definition of used algorithms

The k nearest neighbour (k-NN) algorithm is the
simplest machine-learning algorithm used for both
classification and regression. For regression, k-NN
simply assigns a property value for an object to be taken
as the average of the values of £-NNs. The £-NN is
commonly used to estimate forest attributes using
various remote-sensing data (Franco-Lopez et al.,
2001; Makela and Pekkarinen, 2004; McRobert et al.,
2007). Implementing A-NN algorithms takes three
parameters including the value of £ or number of NN,
type of distance measured and weights for nearest
neighbors. For continuous response variables, the &-
NN prediction for the ith target set element is:

1 k
= 2 [1]

where, 7 is the prediction (outcome) of the query point,
{yi, i=1, 2,..., k} is the set of response variable ob-
servations for the k£ reference set elements that are
nearest to the ith target set element in a feature space
with respect to distance metrics, and w; is the weight
assigned to the ith nearest neighbour that can be ob-
tained with equation [2] (McRoberts, 2009):
k
Wi =2 M 2]

1=

The random forest (RF) means forest of decision trees
and is an extension of classification and regression tree
(CART) method (Breiman, 2001) to reduce instability
of a decision tree. The RF can be used for regression-
type problems to predict forest continuous dependent
variables (Eskelson et al., 2009; Breidenbach et al.,
2010) as well as classification problems to predict
categorical dependent variables (Walton, 2008). In
regression problems, RF is an arbitrary number (en-
semble) of simple trees (subset from independent va-
riables) used to vote responses that are combined (ave-
raged) to obtain an estimate of dependent variables.
Data and variables can be randomly sampled by itera-
tively bagging bootstrap sampling to generate a forest
of regression tree. The predictions of the RF are taken
to be the average of the predictions of the trees. Mean
of errors are obtained trough difference between
observed and tree responses (predictions).

The support vector regression (SVR) algorithm is
regression branch of support vector machine (SVM)
techniques based on statistical learning theory deve-
loped by Vapnik (1995). The SVR generally focus on
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boundaries between classes and then map the input as
space created by independent variables using non-li-
near transformation according to kernel functions. The
most commonly used kernels are radial basis function
(RBF), sigmoid and polynomial. In SVR, the algorithm
is trying to find a hyper plane that can accurately
predict the distribution of information. In this mapped
high-dimensional space, an optimal linear separator or
hyper plane maximizes the margin between classes.
The SVR has been used to estimate forest biophysical
variables in a few studies such as estimating forest ca-
nopy cover (Wang and Brenner, 2009); tree level esti-
mation of biomass (Dalponte et al., 2009) and for leaf
area index (Durbha et al., 2007).

The artificial neural network (ANN) algorithm is a
powerful non-linear modeling technique that is free of
traditional assumptions; well suited for complex non-
linear relationships and perfect for exploratory analy-
ses where the goal is to establish if any relationship
exists among a set of variables. It attempts to model
nonlinear functions with large numbers of variables.
The neural network designers therefore traditionally
run training algorithms a number of times with a given
“neural” network design. In ANN, the type of neural
network, the number of input variables and hidden
units and settings of various control parameters in trai-
ning algorithms can all affect the final performance of
a network. Radial basis function (RBF), generalized
regression neural networks (GRNN) and multilayer
perceptron (MLP) are the most commonly used types
of neural networks. In recent years, several studies have
used ANN for retrieving biophysical variables (Jin and
Liu, 1997; Atzberger, 2004; Niska et al., 2010).

Regarding to above mentioned notes, investigation
on capability of performances of four different theories-
based non-parametric algorithms using combination
of ALS and TM data, is main objective of this study.

Materials and methods

Field data

This study was done in a small area according to
LiDAR covered area on municipal and state forest en-
terprises around Waldkirch, 13 km north-east of Frei-
burg, Germany. The study area is a part of municipal
forests of Waldkirch with 1,267 ha and 411 plots
(Fig. 1). It was a managed forest, semi flat, and compri-
sing hardwood and softwood mixed forest with do-

minant species as follows; European beech (Fagus sy!-
vatica L.), Norway spruce [Picea abies (L.) Karst.], Euro-
pean silver fir (4bies alba Mill.), Douglas fir [ Pseudo-
tsuga menziesii (Mirb.) Franco.] and Sycamore maple
(Acer pseudoplatanus L.) (Breidenbach et al., 2010).

In this study, species-specific volumes of tree spe-
cies for 411 sample plots were selected from the data-
base of the Waldkirch forest that was compiled in 2002
by the Baden-Wurttemberg forest service. The spread-
sheet also contained the species-specific aggregated
total basal area and the average diameter at breast
height (DBH). Forest characteristics were recorded in
all plots consisting of four concentric circular plots
with radii of 2, 3, 6 and 12 m; plots were positioned
on the intersection of a 100 x 200 m sample grid. Indi-
vidual tree volume was calculated using DBH, height
parameters and volume functions of the Baden-
Waurttemberg state forest service and only DBH in the
case of individual basal area used to determine basal
area. Four radius-specific weighting factors were then
applied to volumes and basal areas to scale them to
per-hectare values. These plot-level attributes were de-
rived by aggregating the weighted individual tree vo-
lumes and basal areas.

ALS Data

Low resolution ALS data (return density of 0.5-1
m~?) was acquired from the State Surveying Office of
Baden-Wurttemberg using an Optech ALTM 1225 laser
scanner from a flight height of approximately 900 m
above ground level (AGL) between the years 2000 and
2005. The swath width was 500-600 m with 50%
overlap and scan angle of £20°. The vertical accuracy
and horizontal accuracy were determined about 0.15
and 0.45 m respectively. The ALS raw data as first and
last pulse data were automatically classified into
vegetation and ground returns. Correct classification
of last pulse data was manually checked and corrected
by experts from the state surveying office with the
highest possible accuracy (Breidenbach et al., 2010).
The one meter resolution digital terrain model (DTM)
and digital surface model (DSM) computed after re-
moving the noise hits by TreesVis software (Weinacker
etal., 2004). The plot-level height percentiles (i.e. 1%,
Sth) 10““, 20th’ 25th’ 30th, 40th, 501}1, 60111’ 70111’ 751h’ 80““,
90™, 95% and 99 percentiles), density statistics me-
trics (such as variance, skewness, mean and etc.) and
various ratios of returns as percentages and number of
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Figure 1. Spread of sample plots and position of study area in the municipal forest of Waldkirch region.

returns above 2 meters height break of ALS height data
were computed by “CloudMetrics” syntax in FUSION/
LDV software. These variables extracted for all sample
plots that fell within study area with 900 square meters
equal to plot size. In addition, a canopy cover map was
produced by computing the number of returns greater
than 2 m height break as canopy threshold height di-
vided by the total number of first returns within each
cell (30 m grid). For wall-to-wall mapping, the study
area was tessellated into a 30 meter squared cells to con-
tain sampled inventory plots with TM pixel size. For more
details on mathematical equations and functions,
please refer to FUSION manual (McGaughey, 2010).

Landsat5-TM data

A small window corresponding to the study area was
selected from a Landsat5-TM image taken on 13

August 2003. These images were co-registered to an
orthorectified true color composite of a digital aerial
photo using tie points and DEM extracted from LiDAR
data with RMSE of 0.79 pixels. Tasseled cap transfor-
mation, standardized principal components (PCA) and
some famous and most used vegetation indices inclu-
ding SVI (Simple Ratio Vegetation Index), TVI (Trans-
formed Vegetation Index), NDVI (Normalized Diffe-
rence Vegetation Index), RVI (Ratio Vegetation
Index), DVI (Differential Vegetation Index), NRVI
(Normalized Ratio Vegetation Index), TTVI (Thiam’s
Transformed Vegetation Index), CTVI (Corrected
Transformed Vegetation Index) and GNDVI (Green
Normalized Difference Vegetation Index) were pro-
duced for quantifying and enhancing biophysical
characteristics. Spectral values of main and artificial
TM bands were extracted corresponding to locations
of the 411 plots as observed units and other pixels as
target units.
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Table 1. Descriptive statistical analysis of validation, training and total sample sets

Volume/ha Basal area/ha
Descriptive Validation Training Total  Validation Training Total
Mean 418.23 414.36 415.33 34.77 32.74 33.25
Median 393 392 393 33 32 32
Standard deviation 226.37  221.93 222.77 14.99 14.46 14.61
Minimum 12 11 11 2 3 2
Maximum 1,089 1,087 1,089 68 71 71

Algorithms implementations

In all implementations, 75% of plots were randomly
selected as training samples and the remaining 25%
were selected as test or validation sample sets. Descri-
ptive analysis of training, validation and total sample
sets are showed in the Table 1.

In £-NN implementations, the number of k<-NNs, the
type of distance measurement and weight for nearest
neighbours are considered as the three important para-
meters. To determine the optimal k£ (number of nearest
neighbors), the v-fold and leave-one-out (LOO) cross-
validation selection methods were used based on a &
search range. Cross-validation is a well established
technique that can be used to obtain estimates of model
parameters that are unknown. In this method, by
applying 10 folds and the given range of £ (1 to 64) on
each distance metrics, the algorithm will then calculate
the sum square of errors in validation sample sets for
each k value and then it finds the best £ that has pro-

duced the lowest validation error (Fig. 2). For an effi-
ciency comparison of distance measurements, the four
distance measurements of Euclidean [3], squared
Euclidean [4], Manhattan [5] and Chebychev [6] were
individually tested as both weighted and non-weighted.
In all implementations, the independent variables we-
re standardized through a simple transformation from
OtoI.

D(x,p) = [(x-p)* [3]
D(x,p) = (x-p)° [4]
D(x, p) = Abs(x - p) [5]
D(x, p) = Max(|x - p|) [6]

In all formulas, D is the distance between a target and
areference unit, x is target unit and p is reference unit
In order to assessment of efficiency of used different
data sources i.e. TM and its artificial bands, LiDAR
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Figure 2. The graph of cross-validation error (sum of squared observed errors in training
and test samples) in &£ number of nearest neighbors to find optimal K with lowest error.
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height and density statistics metrics and integration of
TM and LiDAR data for forest variables estimations,
the different ~~-NN implementations with weighted
squared Euclidean distance metric were done on these
data sources.

In RF, good performance depends on the regula-
rization of the decision tree and stopping parameters.
For determination of an optimal number of trees, 400
initial trees were used to produce a graph, which shows
the average squared error rates against each number of
trees for training and test samples. One of the main
parameters, which should be used to determinate RF,
is k predictor (independent variables) in each node for
predicting dependent values (response). The simplest
way to determine k is calculating the square root of
total independent variables (k<+vm, m is number of
independent variables). Default rates were also used
to stop splitting parameters and conditions, which stop
processes of growing trees when stopping conditions
are reached. The used stopping parameters for all
estimations consisted of minimum 1 child in a node
and maximum 200 nodes in each tree to stop growing
the trees. The RF implementation was repeated on the
difference data sources by RBF kernel as the best
kernel which is produced the higher results compared
to other used kernels.

Performance of SVR is affected by three parameters;
capacity (C), which presents a trade-off between the
model’s complexity and the amount to which devia-
tions larger than (C) are tolerated; epsilon (¢), which
controls the width of the d-insensitive zone used to fit
the training data, and gamma (y), as a kernel function
parameter. The kernel parameters can be selected by
some means such as prior knowledge; user experience
or it can be determined by fixing a parameter and con-
trolling other parameters through the highest cross-
validation accuracy. In this study, three different kernel
models were examined; RBF [7], polynomial [8] and
sigmoid [9] in a fixed 0.016 of gamma and based on
“1/ (number of independent variables)” (Hsu et al.
2010).

KX X))=(0 Xi X iy >0 [7]
K(X;, X)) = [8]
K(X;, Xj)=tanh(y X; X;+7) [9]

Here, v, r, and d are kernel parameters, X; and X; are
observed and predicted values respectively.

Two other parameters were selected using 10-fold
cross-validation with 1,000 iterations for minimizing
the error function (Schdlkopf et al., 1998) through a
specified grid search method (Hsu et al., 2010) to
determine rates for the best capacity and epsilon. The
specified grid search included a capacity range from
1 to 64, which is equal to range of input variables
(Mattera and Haykin, 1999) and epsilon values from
0.1 to 0.5. In order to applying different data sources,
the SVR implementations were performed using each
of data sources in different rate of gamma based on
“1/(input variables)” and epsilon values from 0.1 to
0.5, but different capacities equal with number of input
data source variables.

In ANN, the type of neural network, number of input
variables and hidden units and settings of various
control parameters in the training algorithms all have
an effect on the performance of a network. In this study,
three most used types of neural networks’ kernels i.e.
RBF, GRNN and MLP kernels were tested to find the
network that will produce the best results and esti-
mations. The number of neural networks was set at
1,000 in all performances. In addition, the ANN imple-
mentations were repeated on the different data sources
by RBF kernel for volume/ha and GRNN kernel for
basal area/ha estimations.

Validation and quality performance
assessment

Validity of performances was examined using
regression diagnostics metrics of root mean square

error (RMSE) [10], percentage RMSE [11], bias [12]
and percentage bias [13] using the 25% unused samples.

RMSe = EZI(Ei—OiV [10]
m

Bias= > . . (E —O. 11

s = S (E; % (1]

m 2
Eizl(Ei—Oi)/
M 100 [12]

Sl

Sl /
x100 [13]

i 1 /m

Percentage RMSe =

Percentage Bias =
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Where E is estimation values from implementation
of algorithms in m validation samples, O is observation
values and m is the number of validation samples

Results

Results of &~-NN implementations (Table 2) showed
that considering weight on distance provides a more
effective estimate of target pixels or places, in places
where estimates for volume and basal area are required.

It means that giving progressively greater weight on
references, those units that are closer or more similar
to a target unit as squared could be more useful. Se-
condly, it was demonstrated that the squared Euclidean
distance could better produce volume and basal area
in target units with lower RMSE and bias compared to
other metrics. In addition, using a larger k could reduce
the bias and RMSE rates. Fig. 3 shows scatter graph
of observed basal area values versus predicted in test
samples. Results of using different data sources in
k-NN performances with weighted squared Euclidean

Table 2. Results of ~-NN implementations for plot-level volume/ha and basal area/ha estimations

. . . RMSE . Bias
Variables k (optimal) Distance measure RMSE (%) Bias (%)
Volume/ha (m? ha™) 64(64) Chebychev* 174.20 41.16 —14.43 -3.53
64(14) Chebychev 169.92 40.15 -0.15 —-0.03
64(38) Manhattan* 168.94 39.91 2.22 0.52
64(31) Manhattan 164.89 38.96 -2.04 —0.48
64(59) Squared Euclidean* 161.48 38.15 —4.03 -0.96
64(14) Squared Euclidean 169.27 39.99 3.01 0.70
Basal area/ha (m® ha™') 64(59) Squared Euclidean* 11.79 34.80 0.03 0.09
64(15) Squared Euclidean 12.38 36.53 0.45 1.31
64(14) Chebychev 12.26 36.19 0.5 1.47
64(48) Chebychev* 12.18 35.97 —-0.08 -0.24
64(38) Manhattan * 12.32 36.36 0.41 1.19
64(31) Manhattan 11.97 35.33 0.24 0.71
* Weighted.
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Figure 3. The scatter plots of predicted and observed basal area (m? ha™!) in the test samples using

k-NN with squared Euclidian distance metric.
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Table 3. M Results of using different data sources in &~-NN performances with weighted squared Euclidean distance
k-NN parameters Validity metrics
Variables Data

. . RMSE . Bias
K (optimal) Distance measure RMSE (%) Bias (%)
Volume/ha (m?* ha™) ™ 23(23) Squared Euclidean*  196.07 46.47  -11.40 -2.76
LiDAR 41(40)  Squared Euclidean*  162.68 38.44 -5.62 -1.34
TM&LiDAR 64(59) Squared Euclidean* 161.48 38.15 —4.03 —-0.96
Basal area/ha (m?>ha™') TM 23(23) Squared Euclidean* 13.07 38.59 -0.56 —-1.68
LiDAR 41(40)  Squared Euclidean* 11.93 35.20 0.03 0.09
TM&LiDAR 64(59) Squared Euclidean* 11.79 34.80 0.03 0.09

distance showed that combination of LiDAR and TM
data could produce estimations with lower absolute
and percentage RMSE and Bias compared to using
only LiDAR or TM data (Table 3).

Results of the implementation of SVR with different
kernels and their best given parameters (Table 4),
showed that using RBF kernel could produce lower
RMSE and bias compared to other kernels. In volume
estimation, the RMSE rate of applying polynomial
function kernels is close to those obtained by RBF ker-
nels; but results of performance of polynomial function
kernels was very biased compared to those obtained
by RBF. Fig. 4 shows the scatter graph of observed vo-
lume values versus predicted values in the test samples
by implementation of SVR with RBF kernels and sui-
table hyper plane parameters. In basal area estimates,
RMSE and bias rates obtained by using three kernels
are very similar with only very slight difference. Table 5
shows the results of using different data sources in
SVR implementation using RBF kernel as the best ker-
nel that could produce estimations with lowest error.
As it show and expected in advance, combination of
LiDAR and TM data could produce best results.

Performance of RF depends on determining the
number of trees and number of predictors in each node

for producing a good response. Table 6 shows results
of RF performances using the default number of pre-
dictors in each node and the optimal number of trees
with different subsample portions in RFs. In volume/ha
estimation, the performance results of RF showed that
using a subsample portion of 60%, 7 predictors in each
node and 400 initial trees could better predict volume
with lower RMSE compared to a 50% percent subsam-
ple portion with 7 predictors, but the predictions were
very biased. However, for basal area estimates, the best
performance was produced using a 50% percent sub
sample portion and 2 children in each node with the
same 400 initial number of trees and 7 predictors. As
Table 7 shows, combination of LiDAR and TM data
for volume/ha estimation could produce better results
compared to using only LiDAR or TM data. However,
in basal area/ha estimation, using LiDAR data as alone
and as combined to TM data produced slightly similar
results.

In ANN, with an application of a fixed 1,000 num-
ber of neural networks, the results of volume esti-
mation showed that, the RBF network compared to
other types of networks could better test neural
networks. However, in basal area, the GRNN type of
network produced lower results for RMSE and bias

Table 4. Results of SVR implementations for plot-level volume/ha and basal area/ha estimations

Hyper plane parameters

Validity metrics

Variables Kernel .
. . RMSE . Bias
Gamma Capacity Epsilon RMSE (%) Bias (%)
Volume/ha (m? ha™') RBF 0.016 6 0.26 156.02 36.86 0.48 0.11
Polynomial 0.016 19 0.12 156.29 36.92 —-19.90 —4.93
Sigmoid 0.016 20 0.50 165.73 39.16 15.10 3.44
Basal area/ha (m? ha™) RBF 0.016 55 0.20 11.55 34.10 -1.04 -3.17
Polynomial 0.016 20 0.28 12.05 35.57 -1.03 -3.15
Sigmoid 0.016 20 0.18 12.05 35.57 —-1.28 -3.93
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Figure 4. The scatter plots of predicted and observed volume (m? ha™') in the test sam-
ples using SVR with RBF kernel and suitable hyper plane parameters

(Table 8). Results of using different data sources are
also given in Table 9.

Comparative results of implementations are given
in Table 10. For volume estimation, results obtained
by the SVR algorithm were better than those obtained
by the other algorithms that were tested. This result is

in agreement with that of Shataee ef al. (2012), a study
in which the algorithms SVR, RF, and A-NN were
compared to estimate forest attributes using ASTER
data in the Hyrcanian forest and reported that SVR per-
formed well. In basal area estimation, regression
methods yielded close results; however, implemen-

Table 5. Results of using different data sources in SVR implementation using RBF kernel

Hyper plane parameters

Validity metrics

Variables Data

. . RMSE . Bias
Kernel Gamma Capacity Epsilon RMSE (%) Bias (%)
Volume/ha (m* ha™') TM RBF 0.042 20 0.10 194.82  46.03 -33.41 -8.80
LiDAR 0.025 40 0.50 170.36  40.25 16.27 3.70
TM &LiDAR 0.016 56 0.10 156.02  36.86 0.48 0.11
Basal area/ha (m? ha™') TM RBF 0.042 23 0.10 13.13  38.76 -2.06 -6.49
LiDAR 0.025 38 0.20 12.07 35.64 —-1.61 -5.00
TM &LiDAR 0.016 55 0.20 11.55  34.10 -1.04 -3.17
Table 6. Results of RF implementations for plot-level volume/ha and basal area/ha estimations
Decision tree and stopping parameters Validity metrics
k
Variables redictor Minimum number .
P Number Subsafnple of children in each RMSE RMSE Bias Bias
of trees  portion (%) (%)
node
Volume/ha (m® ha™') 7 400 0.60 5 176.17 40.04 -27.2 —6.59
7 400 0.50 5 185.20 46.38 -2.5 —0.63
Basal area/ha (m? ha™') 7 400 0.60 5 12.87 36.79 -1.99 —-6.05
7 400 0.50 5 12.64 38.54 0.05 0.1
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Table 7. Results of using different data sources in RF implementations
Decision tree and stopping parameters Validity metrics
Variables Data k Number Subsample Minim.u m'number RMSE . Bias
. . of child in each RMSE Bias
predictor of tree  portion (%) (%)
node

Volume/ha (m* ha™!) ™ 5 400 0.6 5 197.07  50.72 22.45 5.40

LiDAR 6 400 0.6 5 18530  47.94 20.14 4.90

TM&LiDAR 7 400 0.6 5 176.17  40.04 -27.2 -6.59
Basal area/ha (m* ha!) TM 5 400 0.6 5 13.59  43.87 1.69 5.11

LiDAR 6 400 0.60 5 12.53  38.86 0.56 1.71

TM&LiDAR 7 400 0.50 5 12.64  38.54 0.05 0.17
Table 8. Results of ANN implementations for plot-level volume/ha and basal area/ha estimations

Network parameters Validity metrics
Variables
Number Type RMSE . Bias
of networks of network RMSE (%) Bias (%)

Volume/ha (m? ha™') 1,000 RBF 185.73 44.64 -3.98 -0.96
Basal area/ha (m? ha™) 1,000 GRNN 12.06 35.55 -0.60 -1.81

Table 9. Results of using different data sources in ANN implementations with RBF network for volume/ha and GRNN for

basal arca/ha estimation

Network parameters Validity metrics
Variable Data Number Type RMSE RMSE Bias Bias
of network of network (%) (%)
Volume/ha (m? ha™') ™ 1,000 RBF 190.26 50.58 45.68 10.71
LiDAR 1,000 RBF 186.68 43.64 -14.20 -3.43
TM&LiDAR 1,000 RBF 185.73 44.64 -3.98 -0.96
Basal area /ha (m? ha™') ™ 1,000 GRNN 13.67 43.08 2.05 6.08
LiDAR 1,000 GRNN 13.94 44.09 2.00 5.97
TM&LiDAR 1,000 GRNN 12.06 35.55 —-0.60 -1.81

Table 10. Performance assessment of algorithms for volume/ha and basal area/ha estimation

. . RMSE . Bias

Variables Algorithm RMSE (%) Bias (%)
Volume/ha (m?® ha™) k-NN 161.48 38.15 —4.03 -0.96
SVR 156.02 36.86 0.48 0.11

RF 185.20 46.38 -2.50 —0.63

ANN 185.73 44.64 -3.98 -0.96

Basal area/ha (m? ha™') kNN 11.79 34.80 0.03 0.09
SVR 11.55 34.10 -1.04 -3.17

RF 12.64 38.54 0.05 0.17

ANN 12.06 35.55 —0.60 -1.81
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tation of k~-NN using squared Euclidian distance metric
had slightly higher results with lower RMSE and bias.

Discussion

In a case study and with integration of LiDAR and
optical Landsat-TM data for forest attribute estimation
using four different theory-based non-parametric al-
gorithms including £-NN, SVM, RF and ANN, results
showed that non-parametric algorithms have superio-
rity in estimations compared to habitual statistical me-
thods like multiple regressions. The primary and pre-
test results of analysis using multiple regression with
backward stepwise model building showed that esti-
mations are not acceptable compared to those which
obtained by non-parametric algorithms (for instance,
results of volume estimation assessment were the
RMSE =203 m? ha™!; percentage RMSE =% 48.54;
Bias=-18.37 m? ha! and percentage Bias =% —4.58).

The result of ~-NN demonstrated that the squared
Euclidean distance could better produce volume and
basal area in target units with lower RMSE and bias
compared to other metrics. It confirmed outcomes
reported in other research by Kajisa et al. (2008) in
that k-NN implementations with Euclidean distance
had consistently smaller RMSE and percentage RMSE
than those with other distances. In other studies, the
squared Euclidean was the most used distance metric
(Franco-Lopez et al., 2001; Sironen et al., 2010) and
could produce better results compared to other metrics
(Shataee et al., 2012). Some studies (Nilsson, 1997)
have shown that applying more £ may lead to biased
results due to averaging the values of more pixels, but
in this study, and confirmed by other research (Finely
et al.,2006; McRoberts, 2007), higher k£ values could
reduce the bias and RMSE rates.

Results of the implementation of SVR with different
kernels showed that using RBF kernel could produce
lower RMSE and bias compared to other kernels. It
means that the RBF kernel with its parameters, ob-
tained by the specified grid search method, could
prepare and map the best hyper plane or feature space
for the SVR model. This is agreed with other studies
(Durbha et al., 2007; Cortez and Morais, 2007), the
RBF is the most popular kernel in SVMs.

In both variables, the algorithms A~-NN and SVR had
better performance than RF and ANN algorithms.
Mclnery and Nieuwenhuis (2009) also reported that
k-NN compared to RF could produce lower RMSE and

bias in plot level estimations of stand volume and stand
basal area in Ireland. In addition, Shafri and Ramle
(2009) indicated that SVM in comparison to decision
tree algorithms had better accuracy in classification of
satellite data. Niska et al. (2010) also reported that in
a comparison with k-most similar neighbour and ANN
models, SVR identified as best-suited method for accu-
rate prediction.

Conclusions

Generally, results of study showed that non-parame-
tric algorithms to predict forest parameters using airborne
laser scanning and TM data had different performances
particularly in terms of their capacity for volume esti-
mation. This study exposed that the SVR algorithm,
because of its robustness to dimensionality and ability
to generalize as well as accounting non-linear relation-
ships through regularization of kernel parameters can
be suggested as the best non-parametric algorithm for
regression-based application.

Although, results of this study are valuable and im-
portant for extracting and retrieving of forest quantities
information, however, regarding to type of forest, spa-
tial spread of study area and condition of the study of
area, which is a managed forest and forest structure is
comprised from one to two stories, then results and out-
comes of this study perhaps can be applied and tested
in similar forests elsewhere and/or adopted in other
types of forest with same structure and composition.
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