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Abstract

Aim of study: Exploring the potential effects of various forest management strategies on the ability of forest ecosystems to se-
quester carbon and produce water has become of great concern among forest researchers. The main purpose of this study is to
evaluate the effects of management strategies with different minimum harvesting ages on the amount and monetary worth of carbon,
water and timber values.

Area of study: The study was performed in the Yalniz¢am planning unit located on the northeastern part of Turkey.

Material and Methods: A forest management model with linear programming (LP) was developed to determine the effects of
various minimum harvesting ages. Twenty-four different management strategies were developed to maximize the economic Net
Present Value (NPV) of timber, water and carbon values in addition to their absolute quantities over time. Amount and NPV of for-
est values and ending inventory with different minimum harvesting ages were used as performance indicators to assess and thus
understand forest dynamics.

Main results: Amount and NPV of timber and carbon generally decreased with extended minimum harvesting ages. However,
similar trends were not observed for water production values. The results pointed out that the performance of a management strat-
egy depends highly on the development of a management strategy and the initial forest structure aside from the growth rate.

Research highlights: Minimum harvesting ages affect forest outputs under the same objectives and constraints. Performance of
a management strategy highly depends on initial age class structure in addition to the contents of a management strategy.
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Introduction

Forests provide various outcomes and utilities such
as carbon storage, water production, soil protection,
hunting, amenities and recreational facilities for the
society besides conventional wood and non-wood forest
products. Due to a variety of expectations by the soci-
ety from the forest resources over the last decades,
multiple-use forest management has become the funda-
mental component of national forest policy. Addition-
ally, managing forest ecosystems that provide multiple
goods and services on a sustainable basis is of great
challenge and can be achieved through holistic manage-
ment of ecological, economical and socio-cultural values

of forest ecosystems (Christensen ef al., 1996; Davis et
al., 2001; Baskent et al., 2008a) In this way, the integra-
tion of water production and carbon sequestration into
forest management planning becomes a significant chal-
lenge of contemporary research endeavors.

Forest ecosystems cover wide range of areas on earth
and as such they are one of the most important natural
assets affecting the management of water resources.
Therefore, forest ecosystems have significant function
in the management of water resources. However, water
resources in terms of quantity and quality are affected
by anthropogenic activities as well as natural distur-
bances. Currently, the perceivable effects of climate
change have raised great attention to disclose the water-
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forest relationship in forest ecosystems under multiple-
use forest management concept (Birot ef al., 2011).
Some studies figured out that change in forest ecosys-
tems such as reforestation, afforestation and deforesta-
tion can affect water quantity and quality. For example,
researchers such as Dijk & Keenan (2007) found out
that increasing plantation age affects the amount of
water negatively in afforested watersheds, raising at-
tention to evaluate effects of various rotation ages for
multiple-use in forestry. By using linear regression
analysis, Sahin & Hall (1996) showed that a 10% re-
duction in cover caused 20-25 mm and 17-19 mm in-
crease in water yield from conifer and deciduous forest,
respectively. Thus, minimum harvesting age particu-
larly in managed forest has become an effective indica-
tor for the sustainable management of forest ecosystems
for multiple values.

Over the last decade, the role of forest ecosystems
in carbon sequestration has been well recognized
because of their critical importance in controlling the
global carbon cycle. Fossil-fuel burning and loss of
terrestrial vegetation, for instance, have caused the
atmospheric carbon dioxide to increase (Huston &
Marland, 2003). The carbon dynamics in forests are
largely influenced by periodic disturbances of wild-
fire, insects, disease, degradation, harvesting and
over-harvesting (Kurz et al., 2008; Brown, 2002).
Besides, increasing gas concentration created green-
house effects in the atmosphere that has become one
of the factors on global climate change. In this re-
spect, Kyoto protocol prepared by the UN Framework
Convention on Climate Change (UNFCCC) is a
critical instrument, highlighting the importance of
forest ecosystems for meeting the limits for carbon
emissions (Brown et al., 1999). This protocol aims to
minimize net greenhouse gas emissions through
maximizing afforestation-reforestation activities and
minimizing deforestation of forest ecosystems (Hus-
ton & Marland, 2003). Several management practices
such as intensive silviculture interventions and various
rotation ages can be effective on the amount of stored
carbon in forest ecosystem (Backéus et al., 2005;
Swanson, 2009). Moreover, sustainable land use and
forest ecosystem planning are two key factors on
decreasing the level of greenhouse gases in the atmos-
phere (Hu & Wang, 2008).

In recent years, forest management planning has
progressed from classical planning approach to eco-
system or landscape management approach that har-
monizes various potential conflicts between goods and
services. The new approach accommodates the sustain-
able management of multiple forest values. However,
when various forest values were integrated into forest
management plans, it is quite difficult to estimate what
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minimum harvesting ages would be optimal for the
holistic management of the resources. Determining
optimal minimum harvesting ages for sustainable uti-
lization of multiple values from forests is a great chal-
lenge in forest management planning.

Minimum harvesting age is an important parameter
of forest management planning in deciding amount and
variety of forest products can be harvested from forests.
As known, the timing of interventions (i.e., minimum
harvesting ages) to attain the best mix of forest prod-
ucts and services greatly affects the production of
goods and services. For instance, Cooper (1983)
showed the effects of rotation ages on carbon seques-
tered in trees and soil. Calish et al. (1978) examined
the changes of optimal economic rotation ages when
some forest resources such as water quantity and mass
soil movement are integrated into forest management
planning. While deer management shortens the rotation
age of Douglas fir, for example, mass soil movement
lengthens it. Recently, Diaz-Balteiro & Romero (2003),
Backéus et al. (2005) and Baskent & Mumcu-Kucuker
(2010) incorporated carbon sequestration and water
production into forest management planning to under-
stand the trade-offs among forest values. Financial
worth of carbon would influence the optimal rotation
ages too. Some studies explained that when carbon
prices increased, the minimum harvesting age would
increase, but when timber prices increased, the mini-
mum harvesting age would decrease (Van Kooten et
al., 1995). In addition, Olschewskia & Benitez (2010)
demonstrated that cost of carbon have important effect
on minimum harvesting ages that may cause a doubling
of minimum harvesting age in contrary to optimum 15
years when considering just wood harvest. However,
very few studies are involved in evaluating both the
interactions between timber harvest and carbon storage
and the effects of different minimum harvesting ages
on dynamics of forest ecosystems under management
(Swanson, 2009; Mumcu, 2007). Therefore, it has be-
come necessary to explore the influence of forest eco-
systems onto the carbon storage and water production
by evaluating the effects of various harvesting ages on
forest dynamics.

This study mainly presents a multiple-use forest
management planning methodology accommodating
carbon storage, water and timber production combined
to form forest management strategies. In this context,
carbon storage, water and timber production values
were quantified based on forest biomass and twenty-
four management strategies were established to maxi-
mize NPV of timber, water, carbon or all of them. The
effects of three minimum harvesting ages on the level
of management objectives were also examined. Man-
agement strategies include one forest value in objective
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function subject to desired level for other forest values
as constraints and forest policies such as desired level
of products, even flow timber products, and no restric-
tion option. Forest management models developed
under various planning strategies were solved by using
modified linear programming (LP) approach over a
planning horizon. Forest performance indicators such
as NPV and amount of all forest values were used to
understand forest dynamics created by the various
management strategies.

Materials and Methods

Case study area

Yalniz¢am Forest Planning Unit, located on the
Northeastern part of Turkey, comprises wide area of
approximately 44.679 hectares. 37.926 ha of the area
consists of forest openings, agriculture, grassland,
residential areas and water courses, and 6.752 ha con-
tains pure Scots pine (Pinus sylvestris L.) stands. The
planning unit has 1275 stands managed based on even-
age management practices. In the planning unit mean
annual precipitation is about 544,5 mm and mean an-
nual temperature is 3,7 °C. The elevation changes from
1800 m to 2806 m above sea level with an average
slope of 33%. The planning unit has an average 158,7
m® yield per ha with the initial growing stock mostly
distributed on the older age classes. Historical pattern
of forest management interventions such as lack of
management incentives, insufficient field foresters and
existence of social conflicts in the case study area has
generated the irregular age class structure (Figure 1).
As part of the ecosystems based multiple use forest
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Figure 1. Initial age class structure of the study area.
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management concept, the planning unit was divided
mainly into two sub management units as timber pro-
duction dominated planning areas (47%) and multipur-
pose or conservation dominated planning areas. In
latter conservation dominated areas light silvicultural
interventions are proposed (Mumcu, 2007). In overall,
out of the 9.428 ha forest openings, only 9.046 ha of
which is suitable for harvest scheduling.

Quantifying Timber, Water and Carbon
Values

Since growth and yield models are not currently
available for the study area, the development of the
current stands was forecasted through a ratio between
the actual and optimal basal areas from the yield table.
However, the regenerated stands were presumed to
grow according to the empirical yield table developed
by Alemdag (1967) for Scots pine. While monetary
revenues from various timber assortments were deter-
mined for the round wood volume of the relevant
timber products and their sale values, the costs were
calculated as the sum of general regeneration, admin-
istration, maintenance, harvesting, and reforestation
costs of the related forest enterprise. To estimate NPV
of wood harvests and other values over time 3% guid-
ing rate was determined to be used as discount rate
(Turker, 2000).

Interception, evapotranspiration and infiltration are
the important parameters determining quantity and
quality of water flow (Ferguson, 1996). Reduction of
forest cover may cause some hydrological changes such
as decreasing interception of rainfall, evapotranspira-
tion and increasing runoff (Stednick, 1996). Bosch &
Hewlett (1982), reviewing numerous studies showed
that reducing forest cover increases amount of surface
water. Therefore, a regression model [1], developed
based on a basal area by using SPSS v.11.5 software
as part of a master thesis by Mumcu (2007), was used
to calculate the amount of runoff surface water in the
case study area.

WP =1797,97%¢ *01%"BA - R2=51% (1)
Where; WP is the amount of surface water (m?*) and B4
is the basal area (m?) of a stand.

The monetary value of water was determined based
on incomes and expenses from the Regional Directorate
of State Hydraulic Works. The average value of one m*
water was calculated as average net revenue based on
the average utilization rates of 75%, 15% and 10%
breakdowns in Turkey for irrigation, drinking-use and
industrial water, respectively. Net revenue for one m*
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of different water uses was assumed as half of the sale
price, decided by state development agency of Turkey
(Anonymous, 2001). Consequently, the weighted aver-
age value of one m® water was found as $0.408
(Mumcu, 2007).

Calculating the value of carbon is quite difficult as
carbon sequestration is predicted separately for each
component of forest ecosystem such as forest floor,
understory vegetation, dead wood and soil (Woodbury
et al., 2007). Carbon cycle in forest ecosystems con-
tains components such as storage in forest soil and
products, and emissions from decomposition and burn-
ing of forest products, logging and timber transport. In
recent years, a number of models have been built to
estimate carbon stocks and fluxes in forest soil (Rolff
& Agren, 1999). There are some appealing studies
analyzing carbon fluxes and integrating them into man-
agement planning by different modeling approaches,
different scales and different components (Liski et al.,
2001; Pussinen et al., 2002).

In this study, stored net carbon was predicted by
taking into consideration of growth, production, loss
in forest biomass based on various types of timber [2]
(Diaz-Balteiro & Romero, 2003). In addition, decay
rates of various timber assortments were determined
periodically by equation [3] (Masera et al., 2003).

CB,=[y(V'=V'~'+H) - CE] )

Cpmr+1 = Cpmr*(l - am) (3)
Where; CB, is carbon balance at tth period, CE, is car-
bon emissions, H, is the timber amount harvested, V" is
the timber volume, v is the conversion factor to carbon,
Cp,.; is carbon stored in each timber assortment type m
and a,, is the portion of the product decaying each pe-
riod.

Because carbon amount in soil was not involved in
the model owing to ambiguous and unreliable data,

carbon balance was restricted as below and above
ground carbon sequestration. Merchantable volume was
employed to calculate the biomass of trees using some
equations (Asan ef al., 2002; Baskent ef al., 2008b).
The carbon emissions were calculated based on the
lifetime of timber assortments as suggested in the lit-
erature; 50, 40, 15 and 10 years for sawlogs, mining
pole, boards, and woody debris such as fuel wood, bark
and harvest waste respectively (Krcmar et al., 2005).
In determining the NPV of sequestered carbon, net
carbon income was assumed to be $20/ton according
to UN-ECE/FAO (2000).

Model development

A multiple use forest management model was built
with Model I approach (Davis ef al., 2001) and solved
by Lindo 6.1. The model allows achieving various
levels of objectives and outputs. The NPV of carbon,
timber, water or sum of them were incorporated sepa-
rately into the model as an objective function. In addi-
tion some forest values are kept at desirable levels as
a constraint. Twenty-four management strategies were
formulated based on the combination of various man-
agement objectives with various levels of constraints
such as no restriction, no reforestation, and certain
levels of desired water and carbon amounts over time
(Table 1). Minimum harvesting ages were grouped into
short (80) labeled as S*, medium (100) labeled as M*
and long (120) years labeled as L* and used as lower
harvesting. While maximum harvesting age is fixed as
200 years for all timber production areas, 180 and 300
years were used as lower and upper harvesting ages for
the conservation dominated areas. In fact, some mini-
mum harvesting ages were tested before selecting 80,
100 and 120 years of lengths, as others outside this
range have limited effects based on the problem for-
mulation in the case study area.

Table 1. Alternative forest management planning strategies.

Minimum harvesting ages (years)

Objectives Constraints
80-180 100-180 120-180
ST1 MT1 LTI Max NPVtimber —
ST2 MT2 LT2 W >25x10"m?
ST3 MT3 LT3 Even timber flow
. SW1 MW1 LWI Max NPVywaer —
Strategies SW2 MW2 LW2 C > 4x10°ton
SC1 MC1 LC1 Max NPVeabon -
SC2 MC2 LC2 No reforestation
STWC MTWC LTWC Max NPV timberwater.carbon -

Not: Unless indicated such as ST3, MT3 and LT3, all other strategies used relaxed harvest flow constraint.

Forest Systems
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Some assumptions were established to better under-
stand the complex relationships of forest ecosystem
in focus. The planning horizon of 100 years and ten-
year periods were decided. All calculations for each
stand were assumed to be at the midpoint of each
period. The specified planning actions were thinning,
clear-fell or no intervention. However, thinning was
not allowed for low coverage stands (11%-40%). The
study area was separated primarily into two parts as
production and conservation dominated areas that
included recreation areas, social conflicts areas, reha-
bilitation areas, high mountain forest ecosystem areas
and sensitive areas for biodiversity conservation. In
the conservation areas, light silvicultural interventions
were proposed (Mumcu, 2007; Baskent & Mumcu-
Kucuker, 2010):

— Objective function
Zyax = NPV* 4)

— Constraints and accounting variables

iia;xﬁ — NPV*=0 5)

i=1 =1

iib;;xy—w =0 (6)

i=1 j=1

HI+I_HI=0 (7)
Y >=cC (8)
S wos=w )

Here; equation 4 is objective function maximizing
NPV of various forest values over the planning horizon.
NPV~ represents four different objective functions; NPV
of timber production, NPV of water production, NPV
of carbon sequestration and NPV of sum of three forest
values (timber, carbon and water). While equation 5
shows the NPV of timber, water or carbon, equation 6
carries the quantity of these forest values (timber, water
or carbon). Equation 7 expresses the even flow con-
straint of timber volume. Equations 8 and 9 indicate
the required levels of carbon and water as constraints

over the planning horizon, respectively. m and n are
the number of stands and periods respectively, x; is the
area of stand i treated at period j, a; is the financial
values of products from stand 7 in period j, b; is produc-
tion values of stand i at period j, T is the number of
periods, C and W are the required level of ending inven-
tory for carbon and water, respectively.

Results

The effects of minimum harvesting ages
on timber production

The results indicate that the highest timber harvest
and its NPV over the planning horizon were produced
by the strategies with short rotation ages (S*') except
strategy ST3 (Figures 2 and 3). The shorter harvesting
ages generated more regenerated areas causing the
amount of harvested timber and NPV of timber to in-
crease. Furthermore, the stands in timber production
areas had chances to be harvested twice over the plan-
ning horizon, causing high harvest level and NPV too.
When all strategies with the same objective and con-
straints are compared, shortening harvesting ages from
100 to 80 increases NPV of timber about 14%, from
120 to 80 increases it about 24%. However, the similar
trend in strategy *T3* was not observed as model af-
forested all forest opening areas in the first period due
to the even flow constraint.

Unexpectedly, among all strategies, the SC1 strat-
egy with max NPV of carbon obtained more timber
volumes than did other strategies (Figure 2). Because
afforestation of some opening areas contributes more
to sequester carbon, model afforested all forest opening
areas (9.046 ha) in the first period in *C1 strategies to
meet management objectives (Table 2). Compared to
SCl, strategy SC2 produced less timber harvest volume
because of no reforestation of forest opening areas.
Thus, C1 strategies contributed more to timber harvest
by regenerating older and unproductive stands in the
planning area (Table 2).

The main reason of lesser amount of timber harvest
in *T strategies is the objective function that caused to
reforest less amount of forest openings (Table 2). As

1. (*) is used as a wild card in the labels of management strategies for a condensed and clearer paper. S* means any management
strategy that has letter S at the beginning of it. For example, S* refers the strategies of ST1, ST2, ST3, SW1, SW2, SC1, SC2

and STWC.

2. *T means any management strategy that has letter T in it. For example, *T refers the strategies of ST1, ST2, ST3, MT1, MT2,
MT3, LT1, LT2 and LT3. *T1 refers to ST1, MT1 and LT1 strategies and so on.

Forest Systems
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Table 2. Reforested and regenerated areas over planning horizon by the strategies.

Minimum Type of areas Strategies
harvesting age (ha) T1 T2 T3 c1 2 w1 W2  TWC
S 80-180  Reforested 8093 672 1891 9046 0 660 6753 9046
Regenerated 8542 7865 4674 8780 8812 6982 8761 8780
M 100-180  Reforested 7922 10 6529 9046 0 650 8151 9046
Regenerated 5640 4772 3966 5949 5949 4614 5819 5949
L 120-180  Reforested 7922 0 1992 9046 0 665 8215 9046
Regenerated 5648 4872 4373 5958 5958 4627 5891 5958
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Figure 2. Timber harvest volumes produced by each planning
strategy at the end of planning horizon.

reforestation of forest openings negatively affected
NPV of timber, *T strategies produced less amount of
timber yield over planning horizon. The results indi-
cated that when the amount of target water (25x10’
tons) was incorporated in strategy *T2, both of volume
and NPV of timber decreased. When *T2 strategies
were compared to unrestricted strategies of *T1; timber
volume reductions were observed as 33%, 45%, 45%,
and timber NPV reductions as 18%, 22% and 24% in
minimum ages 80, 100 and 120, respectively. Simi-
larly, when the even timber flow constraint (*T3) was
included in the model timber volume decreased by
50%, 18% and 36%, and the NPV of timber by 33%,
13% and 16% in minimum harvesting ages 80, 100 and
120, respectively. In addition, as model aimed to
maximize water, timber and carbon revenues together,
NPV of timber decreased too.

As expected, among all, *T1 and *C1 strategies
produced the highest timber NPV ($37.689.256,
$36.627.585) over the planning horizon (Figure 3).
Even though the objective of *T strategies is the same,
*T3 strategies produced lower monetary income than
T1 and T2 strategies did due mainly to even-timber
flow constraint.

Forest Systems

Figure 3. Timber NPV for each planning strategy at the end of
planning horizon.

The effects of minimum harvesting ages
on carbon sequestration

The strategies with various minimum harvesting ages
clearly showed that shorter ages generated more
amount and NPV of carbon over the planning horizon,
except with even timber flow constraint. When all
strategies with the same objective and constraints are
compared, for example in strategy *C1, extending
minimum ages from 80 to 100 and 120 years decreased
carbon values about 6% and 7%, respectively (Figure
4). Similarly, changing minimum harvesting ages from
80 to 100 and 120 years caused to decrease carbon NPV
about 4% and 7%, respectively (Figure 5).

Strategies *C1 with maximization of carbon NPV
produced the highest carbon and carbon NPV values
among all strategies and minimum harvesting ages
(Figure 4 and 5). Since the strategies aimed to maxi-
mize NPV of carbon sequestration over the planning
horizon, most of the stands that reached minimum
harvesting age were immediately regenerated particu-
larly in the early periods. As known, slower growth
rate of older stands sequester less carbon. As regener-
ated stands developing in a regulated forest have
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Figure 4. Carbon flux of forest management strategies at the
end of planning horizon.
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Figure 5. Carbon NPV of forest management strategies at the
end of planning horizon.

faster growth rates, strategies with maximization of
carbon or monetary value regenerated most of the cur-
rent stands especially in the former periods. The se-
questered carbon is then reduced along with the declin-
ing growth rate, probably causing over mature stands
to lose carbon (Jarvis et al., 2005). More areas were
regenerated in the first period in *C1 strategies due to
initial broken age class distribution of the planning
unit. Since the study area is composed of mainly ma-
ture stands, model naturally tended to harvest stands
that exceeded the minimum harvesting age particu-
larly in the first period as expected.

Although strategies *C2 have the same objective
function, they generated lower value and NPV of car-
bon. When the afforestation constraint was released
from the model, both value and NPV of carbon de-
creased. Compared to strategies *C1, sequestrated

Forest Systems

carbon decreased about 61%, 64% and 64% in strate-
gies *C2, NPV of sequestrated carbon also decreased
almost 59%, 61% and 63% in minimum harvesting ages
80, 100 and 120, respectively. While all forest opening
areas (9.046 ha) were afforested in strategies *C1 es-
pecially in the first period, in strategies *C2 no areas
were afforested because of the constraint (Table 2). In
addition, TWC strategies obtained almost the same
amount of carbon and NPV over the planning horizon
as the strategies afforested all forest opening areas.

Effects of minimum harvesting ages on
water production

The results showed that total water production and
NPV in different minimum ages did not follow a sys-

30000
25000
20000
15000

10000

Water Production (10*m?3)

5000 ~

0 |
T T2 T3 C1 2 W w2 TWC

Planning Strategies

| W S(80-180) [ M(100-180)  [J L(120-180) |

Figure 6. Water production of forest management strategies
at the end of planning horizon.
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| m S(80-180) @ M(100-180) [ L(120-180) |

Figure 7. Water NPV of forest management strategies at the
end of planning horizon.
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tematic trend unlike timber and carbon values (Figures
6 and 7). *W1 strategies aiming maximal NPV of water
produced the highest amount of water and their NPV.
However, water production decreased about 25%, 29%
and 30% when carbon target was incorporated into
*W2 strategies with minimum harvesting ages 80, 100
and 120, respectively. It can be seen in Table 2 that in
strategies *W2 more forest opening areas were refor-
ested compared to *W1 strategies.

Discussions

In this study, timber, water and carbon values in as-
sociation with their monetary values were incorpo-
rated successfully into a multi purposed forest manage-
ment plan and the effects of different minimum
harvesting ages on these values were explored. Twen-
ty-four management alternatives with various objec-
tives, minimum ages and constraints were developed
and solved with LP for a real case study area.

In current study, 180-year minimum harvesting age
was used in conservation areas and three different
minimum ages such as 80, 100 and 120 years were
tested in timber production areas. Shorter harvesting
ages facilitated higher timber and its NPV over the
planning horizon. A similar study demonstrated that
shorter harvesting ages increased the amount of har-
vested timber (Liski et al., 2001). The same study
showed that the mean net incomes of timber were the
highest for Scots pine and Norway spruce was man-
aged with 90-year and 60-year rotation age respec-
tively. The study obviously showed that when the
financial values of timber are integrated into the
model, the model overlooks some expenses like re-
forestation. As expected, additional constraints into
management planning cause loss of volume and NPV
of timber products (Raymer et al., 2005; Baskent et
al., 2008b).

In addition, when carbon values from all strategies
with the same objective and constraints were com-
pared, 80-year harvesting age caused higher carbon
storage to take place. The mature initial age class
structure in the planning unit seemed to be the most
important factor causing for this response. As known,
older stands sequester less carbon because of slower
growth rate while regenerated stands developing in a
regulated forest sequester more carbon (Jarvis et al.,
2005). Similarly, Backéus et al. (2005) demonstrated
that total carbon storage increases at a slower rate
when a forest matures over time, implying less amount
of carbon flux in a forest. Perez- Garcia et al. (2005)
figured out that when carbon emissions are taken into
account, shorter rotations incline to increase total
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carbon storage. Liski ef al. (2001), however, showed
that while the cumulative amount of carbon seques-
tered in Scots pine forest increased with increasing
harvesting age it reduced in Norway spruce forest.
Similarly, some researchers indicated that some silvi-
culturel interventions such as reforestation (Krcmar et
al.,2001; Baskent et al., 2008b) or afforestation (Kaul
et al., 2009) particularly in early periods, cause high
biomass and provide positive effects on the seques-
trated carbon despite the certain amount of expenses
of reforestation.

However, the results indicated that total water pro-
duction and NPV in different minimum harvesting ages
did not follow a systematic trend observed in timber
and carbon values. As the water production is related
to the basal area, strategies *W2 regenerated further
areas in the early periods and accordingly most of the
forest openings were reforested in the first period. In
following periods, the renewed or reforested sub-
compartments created further basal area, resulting in
less quantity of water production. Similar correlations
were detected by other researches (Brown et al., 2005;
Benyon et al., 2007).

This study showed that the amount of forest products
and services derived from forest ecosystem depend on
minimum harvesting ages as well as forest management
activities. Thus, the minimum harvesting age can then
be considered a good tool and effective method to man-
age the forest products and services in developing
forest management policies (Liski e al., 2001). Ad-
ditionally, the performance of a management strategy
depends highly on the components of a strategy and
the initial forest structure aside from the growth rate.

The model developed in this study may have some
shortcomings for further improvements. The stand
simulation model is related to a simple allometric re-
lationship between the current and the optimal develop-
ment pattern of the stands. Realistically, however, a
dynamic growth and yield model should be developed
based on permanent sample plots and site information.
There are many forest management objectives such as
controlling soil loss that may have to be integrated into
the model as well. The spatial arrangement of the har-
vest schedule such as block size, adjacency and open-
ing sizes needs to be controlled either by using mixed
integer programming or meta-heuristic techniques.
Decomposition rates of timber should be calculated
according to time and species too. The amount of soil
carbon should also be taken into account in calculating
total sequestered carbon. Furthermore, stochastic inci-
dents such as forest fires, wind, insect fungi and cli-
matic change affecting forest products and monetary
values should also be involved in multiuse forest man-
agement planning.
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