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Abstract
Aim of the study: The aim of this work was to isolate consortia of arbuscular mycorrhizal fungi (AMF) associated to Liquidambar 

styraciflua in soils of the Santa Marta Mountain in Veracruz, and to select highly effective mycorrhizal consortia on promoting the 
growth of four tree forest species with economic and ecological importance.

Area of study: Santa Marta Mountain, inside the buffer area of the Los Tuxtlas Biological Reserve in Veracruz (México).
Materials and methods: Ten composite samples of rhizosphere soil were collected from L. styraciflua trees of 13-15 cm DBH 

(diameter at breast height). Roots were fixed in FAA solution to determine the mycorrhizal colonization percentage, the abundance of 
morphospecies, and its effectiveness in promoting the growth of L. styraciflua, Terminalia amazonia, Cordia alliodora, and Cojoba 
arborea. Soil physical and chemical characteristics were also analysed, and soil type recognition was performed with the Reference 
Base for Soil FAO-ISRIC World-SICS. Mycorrhizal colonization was determined by the method of clearing and staining roots with 
trypan blue; total percentage of colonization was estimated by the Linderman-Biermann method. Spores were extracted for counting 
and identifying morphospecies from each soil sample, those with more effectiveness were selected and inoculated in the four tree 
species, based upon a completely random design there were evaluated height, number of leaves, total dry weight and foliar area.

Main results: Average mycorrhizal colonization percentage was 45% from natural conditions, samples one and four showed 80% of 
AMF-colonization. Average number of spores was 617 in 100 g-1 of dry soil. Forty-seven AMF-morphospecies were identified. After 
eight months significant differences were observed in root colonization, height, number of leaves, total dry weight, leaf area and foliar 
analysis of N5+, P5+ and K+ on plants inoculated with rhizosphere samples of L. styraciflua. Terminalia amazonia and Cojoba arborea 
showed greater response to the inoculation of AMF, they showed more height, number of leaves and more total dry weight; whereas C. 
alliodora appears to be low dependent on AMF.

Highlights: Diversispora aurantia and Glomus aggregatum are reported by the first time from Mexican humid tropics. Native AMF 
have potential biotechnological application. The mycorrhizal consortium six (Glomus and Acaulospora) was the more effective in 
promoting the development of the four tree species used in the experiment. 
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Introduction

Arbuscular mycorrhizal fungi (AMF) are obligate 
symbionts that depend on colonizing plants for 
obtaining carbon sources for their growth; in reciprocity, 
fungi favour nutrient uptake such as P, N, Cu, Zn, 
K, Ca, Fe and Mg in plant hosts (Flores & Cuenca, 
2004; Cuenca et al., 2007; Hernández & Salas, 2009). 

Studies on mycorrhizal plant dependency in rainforest 
have shown that most plant species are colonized by 
AMF (Zangaro et al., 2000; Kiers et al., 2000; Allen 
et al., 2003; Hernández & Salas, 2009). Poor nutrient 
availability in tropical soils constitutes an adequate 
environment for the development of AMF. Likewise, 
AMF, promote high tolerance to defoliation caused 
by herbivores (Saint-Pierre et al., 2004), and improve 
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soil structure, preventing erosion (Rillig, 2004). In turn, 
AMF allow modifications in microbial populations, 
contributing as regulators of beneficial and pathogenic 
microbiota and influencing organic carbon dynamics 
and fertility of soils (Alarcon et al., 2007a). Rodríguez 
et al. (2002) demonstrated that AMF diminishing both 
leaching and fixation of nutrients, as well as reducing 
soil erosion since AMF hyphae allow better uptake and 
mobilization of nutriments to the host, and favour soil 
aggregation. The symbiotic performance on plant host 
is equally influenced by hydric status of soil and light 
availability (Gavito et al., 2008; Shukla et al., 2008). 

The research on arbuscular mycorrhizal fungus 
(AMF) in native tree forest species in Mexico is still 
incipient. However, several authors agree on the 
advantages that the AMF inoculation provides on 
improving root growth, increasing plant survival, 
reducing the time plants spend in nursery, reducing cost 
production due to reduction of fertilizer applications, 
as well as increasing plant quality (Gehring & Connell, 
2005; Allen et al., 2003; Hernández & Salas, 2009). 
Other advantages of AMF inoculation are related to the 
increase of photosynthetic rate during acclimatization 
and development of micro-propagated plants, the 
induction of drought resistance, and the protection 
of roots against pathogen attack (Ferrera-Cerrato & 
Alarcón, 2004; Gavito et al., 2008; Shukla et al., 2008).

In particular, some studies reported that seedlings 
of Liquidambar sp. colonized by Glomus mosseae, 
G. deserticola and G. etunicatum showed improved 
P-absorption when compared to non-mycorrhizal 
plants (Kormanik, 1985). In addition, species of 
Terminalia (T. arjuna, T. bellirica and T. amazonia) 
are very sensitive to source of AMF inoculum ranged 
from 50 to 60% (Onguene & Kuyper, 2005; Aldrich-
Wolfe, 2007). Furthermore, AMF genera such as 
Glomus, Acaulospora, Entrophospora, Scutellospora, 
Gigaspora and Archaeospora were found in T. 
amazonia (Onguene & Kuyper, 2001; Aldrich-Wolfe, 
2007). Similarly, Wang & Qiu (2006) reviewed 36 plant 
species belonging to the Boraginaceae family, and 21 of 
them showed arbuscular mycorrhizal colonization, eight 
species showed facultative mycorrhizal dependency, 
and the remaining seven species did not form this 
symbiosis. Some Cordia species like C. alliodora 
(Allen et al., 1998), C. curassavica (Camargo-Ricalde 
et al., 2003), C. ecalyculata y C. trichotoma (Zangaro 
et al., 2003) are mycorrhizal species. There is little 
specific information about the effects of AMF in 
Cojoba arborea (L.) Britton & Rose. However, most 
members of the Fabaceae family are nitrogen-fixing 
trees that establish AMF symbiosis which favor both 
P-uptake and rhizobial nodulation in roots (Guzman-
Plazola & Ferrera-Cerrato, 1990; Ezawa et al., 2002). 

Wang & Qiu (2006) mentioned that 296 out of 315 
species for the Fabaceae family, showed mycorrhizal 
symbiosis, 255 of them had arbuscular mycorrhiza 
(mainly associated with Glomus), and 41 had other 
types of mycorrhizal association. More importantly, 
the studies of the mycorrhizal symbiosis in tropical rain 
forest have increased in the recent years; these studies 
were focused on understanding the diversity of AMF 
species, and both the potential application of some of 
them in tropical forest ecosystems, and the inoculation 
for restoration of disturbed tropical regions (Gehring & 
Connell, 2005).

About 95% of the rainforests of Mexico has been lost, 
and Los Tuxtlas region in Veracruz is one of the most 
affected. In this area it has been estimated that 75% of 
the original forest resources have already disappeared; 
and the remaining 20% is denoted by isolated 
fragments or as cornfield, shade coffee agroecosystems 
or grasslands (Castillo-Campos & Laborde, 2006). 
Soil loss is estimated between 20 to 6,284 ton ha-1 yr-1 
(Ávila-Bello et al., 2012), and the later may also affect 
AMF diversity (Cuenca et al., 1998; Gavito et al., 
2008). The ecological value of Los Tuxtlas Biosphere 
Reserve lies on being the place where the Huazuntlán 
River originates. This river supplies drinking water 
to over 600,000 inhabitants including the cities of 
Coatzacoalcos, Minatitlán and Acayucan, among others 
(CONANP, 2006). Liquidambar styraciflua L., is a tree 
species with ecological and economic importance that 
dominates deciduous forests in Mexico (400 to 1,800 
masl), and this species forms arbuscular mycorrhizal 
symbiosis (Ruiz-Sanchez & Ornelas, 2014; Gual-Díaz 
& Rendón-Correa, 2014). The aims of this study were 
1) to isolate AMF consortia associated to L. styraciflua 
from soils of the Sierra de Santa Marta, Veracruz, and 
2) to evaluate an AMF consortium highly effective on 
promoting the growth of C. alliodora, T. amazonia 
and Cojoba arborea, when compared to fertilizer 
application under nursery conditions. The later tree 
species have high economic, cultural and ecological 
value in the mentioned tropical region.

Materials and methods

Study area, sampling collection and processing of 
soil samples

The study area is located in the Sierra de Santa Marta 
(SE, Veracruz, Mexico). Rhizosphere sampling was 
conducted in a deciduous forest with L. styraciflua as 
predominant species (700 masl; 18° 35 ‘N, and 94° 35’ 
and 95 ° 02 ‘W). Climate is hot and humid with rain 
all year around, annual average temperature between 
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22 and 24 ° C, and annual precipitation between 3500-
4000 mm. The most important soil types are Acrisols 
and Versitols (Mariano & García, 2010). Besides L. 
styraciflua, other tree species in such forest are Clethra 
mexicana, Carpinus sp., Quercus affinis, Q. skinneri, 
and Virola guatemalensis (Castillo-Campos & Laborde, 
2006). 

The sampling was conducted by selecting 10 
trees of L. styraciflua of 13-15 cm DBH (diameter at 
breast height) because they were the more abundant 
individuals in the area. Four samples of rhizosphere 
soil, call consortium, were taken for each tree (20 cm 
depth, because at that depth it can be found greater 
microbial activity), and mixed for obtaining 1 kg of soil 
(González & Barrios, 1983). Soil samples were stored 
at 5 °C in properly labelled plastic bags for further 
chemical properties and AMF-morphospecies analyses. 
Additionally, root samples were taken and fixed in FAA 
solution (Sieverding, 1985), to determine the percentage 
of AMF-colonization.

Soil texture was determined by the method particle 
size and organic mater of Walkley & Black (1934). 
In addition, pH with the potenciometric method 
(APHA, 1998) and the content of N-total with the 
method of micro-Kjeldahl (APHA, 1998); P-total 
by Bray I (Bray & Kurtz, 1945) and Ca and Mg 
with EDTA titration method (Barrows & Simpson, 
1962). Soil type recognition was carried out by the 
baseline for the FAO World Soil-ISRIC-ISSS (1998). 
Mycorrhizal colonization was made by the method of 
clearing and staining roots with trypan blue (Phillips 
& Hayman, 1970), and the total colonization was 
estimated by the method of Biermann & Linderman 
(1981).

Extraction, counting and identification of AMF 
spores from each tree (each soil sample corresponds 
to one consortium) were based on 100 g of dry soil 
collected from the field (Gerdeman & Nicolson, 1963; 
Schenck & Pérez, 1990; INVAM, 2009. Scientific 
names of AMF morphospecies were corroborated in 
accordance to the identification keys and scientific 
papers included in the following web site http://
www.amf-phylogeny.com. In addition, culture traps 
using the soil collected from the field plus sand (1:1 
v/v) were set for propagating the native AMF, for six 
months (Sieverding, 1991). Brachiaria decumbens 
was used as host under greenhouse conditions (average 
minimum and maximum temperature of 20 °C and 38 
°C, respectively), and watered with tap water as needed. 
After six months, irrigation was suspended for a week 
to allow the AMF sporulation. Spores were extracted 
and mounted on slides to carry out their taxonomic 
identification by following the references previously 
mentioned. 

Assessing and selecting effective AMF consortia 

To assess the effectiveness of AMF consortia a 
completely randomized experimental design was set 
with three treatments (consortia, Triple 17 fertilizer 
(N-P-K, 12-24-12) and a control); ten replicates for each 
treatment (n=10) were distributed. Data were examined 
by means of an analysis of variance, and the mean 
comparison test (Tukey, α=0.05) (SAS Institute, 2002).

Each rhizosphere soil sample (20 g) collected from 
field conditions was inoculated in pots containing 
1.5 kg of autoclaved substrate (regional soil+sand, 
1:2 v/v). After 15-days seedlings of L. styraciflua 
were transplanted and maintained under greenhouse 
conditions (low shaded to 60% of light and average 
temperature of 28° C) and irrigated with tap water as 
needed. After eight months of growing, plant height, 
leaf number, leaf area, total dry weight (leaves, stem 
and root) and percentage of mycorrhizal colonization 
were determined. This experiment allowed to determine 
which mycorrhizal consortium has the optimum effect 
on seedlings, which was selected for using in the 
following experimentation.

Seeds from Terminalia amazonia, Cordia alliodora, 
and Cojoba arborea were sown and germinated in 
plastic trays with sterile substrate (local soil+sand, 1:1 
v/v). Subsequently, seedlings of 1.5 cm height were 
transplanted to plastic bags with sterilized substrate 
with the same composition described above. One third 
of plants of each tree species was inoculated with 20 
g of the mycorrhizal consortium selected from the 
previous experimental stage (n= 10). Another third of 
the plants was fertilized with one gram of Triple17; 
and the remaining third of the seedlings stayed without 
neither inoculation nor fertilizer application as control 
treatment. The experiment was conducted under nursery 
conditions with 60% shade, and average temperature of 
28 °C. Plants were daily irrigated to field capacity with 
tap water. After five months, plants were harvested to 
measure plant height, leaf number, total dry biomass, 
all variables used as surrogates of plant growth during 
the studied period, and percentage of mycorrhizal 
colonization.

Results

Soils chemical properties and identification of 
AMF morphotypes

The pH values of soil samples taken in the field ranged 
from 4.8 to 5.3, and rhizosphere samples showed high 
organic content (6.7% to 9.9%). In regard to the nutrient 
content, it was found high content of P (71.6 to 98.5 mg 
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kg-1) in samples 6, 7, 8, 9 and 10; and for all samples the 
content of N (0.33 to 0.49%), and Ca (436.3 to 1386.5 
mg kg-1) was high. The content of Mg was high only 
for samples 1, 3, and 10 (491.8 to 888.1 mg kg-1). The 
soil texture was clay (90%) and sandy clay loam (10%) 
(Table 1). Thirty-three AMF morphotypes were identified 
from the rhizosphere samples of L. styraciflua collected 
from the field, while in the pots in which AMF were 
propagated with B. decumbens, only 18 morphotypes 
were identified (Table 2). The most common AMF found 
in all samples were Sclerocystis sinuosa, Acaulospora 
scrobiculata and Diversispora aurantia. In contrast, S. 
clavispora and Glomus aggregatum were recorded only 
for B. decumbens pots. Overall, more AMF morphotypes 
were recorded from L. styraciflua at field conditions when 
compared to the propagation in culture traps. From the 47 
AMF morphotypes identified, 41 of them corresponded 
to Glomus (87.2%), five to Acaulospora (10%), and one 
to Diversispora (2.8%). From these morphotypes, five 
were identified to species level: S. clavispora (Trappe), 
S. sinuosa (Gerdemann & Bakshi, Almeida & Schenck), 
and A. scrobiculata, G. aggregatum (N.C. Schenck & 
G.S. Sm. Emend. Koske), and D. aurantia (Blaszk., 
Blanke, Renker & Buscot). The last AMF species was 
recently reclassified into the family Diversisporaceae 
(Schüßler & Walker, 2010).

Effectiveness of AMF consortium on growth 
promotion

The inoculation of Liquidambar styraciflua with 
the rhizosphere samples collected from the field had 

significant effects on plant growth. The rhizosphere 
sample number six showed most consistent beneficial 
effects on height, number of leaves, leaf area, and total 
dry weight when compared to the remaining samples 
containing different mycorrhizal consortia and to 
the control (Figure 1A-D), consortium six shows no 
statistical differences with the other consortia, except 
height in sample two. Plants inoculated with consortium 
six and eight showed high mycorrhizal colonization 
percentages, 88% and 93%, respectively; no mycorrhizal 
colonization was observed in control plants. Based on 
these results, the mycorrhizal consortium number six, 
that includes Glomus and Acaulospora species, was 
selected for the other experimental phase, because 
it showed more effectiveness in the tree seedlings 
inoculated, despite no statistical differences between 
samples. 

The addition of mycorrhiza (consortium composed 
by Glomus and Acaulospora) showed differential 
effects on the growth of the other three tree species 
(Figure 2). Cordia alliodora showed significantly 
greater growth (height and total dry weight) due to 
fertilization than control or inoculated plants (Figure 
2A and C). Terminalia amazonia presented greater 
height, leaf number, and total dry weight due to the 
inoculation of the AMF consortium than control or 
fertilized plants (Figure 2A, B, and C). In contrast, C. 
arborea showed growth variations due to treatment 
effects; plant height was not significantly stimulated by 
either fertilization or AMF inoculation (Figure 2A); in 
contrast, the number of leaves decreased significantly 
due to fertilization (Figure 2B), while the total dry 

Table 1. Physical and chemical characteristics*, mycorrhizal colonization and spore number in 100 g of dry soil of ar-
buscular mycorrhizal fungus (AMF) from ten samples collected at a Liquidambar styraciflua plantation in La Sierra de 
Santa Martha, Veracruz.

Rhizosphere 
sample Texture pH Organic 

mater (%)

Nutritional content
Mycorrhizal 
colonization 

(%)

Number of 
spores  

(100 g dry soil)
Total N 

(%)
Total P

(%)
Mg 

(mg kg-1)
Ca

(mg kg-1)

1 Clay 5.3 8.2 0.41 24.6 491.8 843.9 80 810

2 Clay 5.3 6.6 0.33 29.1 390.6 701.8 58 450

3 Clay 5.3 7.9 0.39 24.6 632.3 922.9 49 650

4 Clay 5.2 7.4 0.37 29.1 355.5 436.2 78 720

5 Clay 5.2 6.6 0.33 52.2 362.7 719.4 49 610

6 Clay 4.8 7.5 0.37 71.5 270.9 838.8 50 730

7 Silty-Clay-
Loam 5.1 8.7 0.43 90.1 349.1 1192.3 68 675

8 Clay 5.2 9.9 0.49 98.5 279.6 1386.5 10 425

9 Clay 5.1 8.1 0.41 90.1 276.7 1011.3 60 680

10 Clay 4.9 8.1 0.41 96.8 888.1 999.2 60 620
*Data for soil properties are given on the basis of values provided by a specialized laboratory, and do not include replicates for estimat-
ing either standard deviations or standard errors for each soil parameter.
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weight significantly increased due to AMF inoculation 
(Figure 2C). Mycorrhizal colonization in the three tree 
species ranged from 2 to 99 %. The AMF consortium 
was very infective in C. alliodora and T. amazonia (71.5 
and 99.1%, respectively), but mycorrhizal colonization 
in C. arborea only reached 20.8%.

Discussion

The ten rhizosphere soil samples collected from L. 
styraciflua trees at field conditions had high fertility and 
strongly acid pH, that probably cause several problems 
of toxicity by aluminium and magnesium. The later 
coincides with the studies of Castillo (2004), Álvarez-
Sánchez et al. (2007) and Mariano & García (2010), 
conducted in the same region, in which they reported 
Acrisol soils with clay texture, acid pH (4-5), and 6% of 
organic matter content. 

Sample nine had the lowest content of organic matter, 
P and N, but had more spores and high mycorrhizal 
colonization. In this sense, Egerton-Warburton et al. 
(2007) mentioned that when soil fertility is high, the 
abundance of spores is low; the later highlight that 
soil fertility is an important factor for these fungal 
propagules (Johnson et al., 1992). The average number 
of spores recorded (640 in 100 g of dry soil) in L. 
styraciflua rhizosphere is greater than that (141 in 100 
g of dry soil) reported by Rodríguez-Morelos (2011) 
at the same study area. Similarly, root colonization 
percentages from field samples do not always correlates 

with the number of spores. Cuervo & Rivas (2007) 
indicated that the number of spores and the colonization 
percentage are indicators of AMF establishment in roots, 
but they do not indicate the mycorrhizal effectiveness 
on host. Shi et al. (2006) referred that when the AMF 
species richness is greater, the root colonization 
percentage is higher too, regardless the spore number 
in the soil. For L. styraciflua the number of spores 
found in the AMF rhizosphere at field conditions might 
indicate that the native mycorrhizal inoculum has high 
infectivity in roots as it was observed in the sample nine 
(> 50% colonization). According to the field samples 
results, it can be concluded that soil fertility and pH 
are not affecting the performance of native AMF; this 
statement is strongly supported by the number of spores 
found (640 in 100 g of dry soil), the number of AMF 
morphospecies (47), and the mycorrhizal colonization 
percentages (73.9% to 93%).

The total number of AMF associated with the 
rhizosphere of L. styraciflua recorded in this study was 
47 morphoespecies, and 97.8% of those corresponded 
to Acaulospora and Glomus morphospecies. The 
inoculum characterization from field samples and 
culture traps showed dominance of Glomus (87.2%) 
whose morphotypes were not identified. The spores of 
Glomus and Acaulospora genera have strong association 
with L. styraciflua. G. aggregatum and S. clavispora are 
reported by the first time in the Mexican tropic. 

The growth of leaves, height and foliar area of 
L. styraciflua was significantly enhanced due to the 
inoculation of the ten consortia, however there is no 

Table 2. AMF morphotypes associated with Liquidambar styraciflua (A) under field conditions, and trap crops of Brachi-
aria decumbens (B), after eight months of propagation.

 (A) (B)

Glomerales/ Glomeraceae Sclerocystis sinuosa Gerd. & Bakshi*
Glomus sp. 1, Glomus sp. 2
Glomus sp. 3, Glomus sp. 4
Glomus sp. 5, Glomus sp. 6
Glomus sp. 7, Glomus sp. 8
Glomus sp. 9, Glomus sp. 10
Glomus sp. 11, Glomus sp. 12
Glomus sp. 13, Glomus sp. 14
Glomus sp. 15, Glomus sp. 16
Glomus sp. 17, Glomus sp. 18
Glomus sp. 19, Glomus sp. 20
Glomus sp. 21, Glomus sp. 22
Glomus sp. 23, Glomus sp. 24
Glomus sp. 25, Glomus sp. 26
Glomus sp. 27. Esporocarpo

Sclerocystis clavispora Trappe*
Glomus aggregatum Schenck & Sm.*
Sclerocystis sinuosa Gerd. & Bakshi*
Glomus sp. 28
Glomus sp. 29
Glomus sp. 30
Glomus sp. 31
Glomus sp. 32
Glomus sp. 33
Glomus sp. 34
Glomus sp. 35
Glomus sp. 36
Glomus sp. 37
Glomus sp. 38
Glomus sp. 39. Esporocarpo

Diversisporales/ 
Acaulosporaceae

A. scrobiculata Trappe*, Acaulospora sp.1 
Acaulospora sp. 2, Acaulospora sp. 3

A. scrobiculata Trappe*
Acaulospora sp. 4

Diversisporales/Diversispo-
raceae

Diversispora aurantia (Błaszk., Blanke, 
Renker & Buscot) Walker & Schuessler* 

Diversispora aurantia (Błaszk., Blanke, 
Renker & Buscot) Walker & Schuessler*

* For these AMF species the keys for its description were based on the information provided at the web site: http://www.arbuscular-my-
corrhiza.net/amphylo_species.html (retrieved on July 2016).
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Rhizosphere samples inoculated (10 g per plant)

ba
b

ba ba
ba

a

ba ba
ba ba

b

0

5

10

15

20

25

30

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 C

Pl
an

t 
he

ig
ht

 (
cm

)

A)

bac
bc ba

ba
ba

a

ba
ba

ba ba

c

0

10

20

30

40

50

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 C

N
um

be
r 

of
 le

av
es

B)

a a

a

a a
a

a
a

a

a

a

0

0.5

1

1.5

2

2.5

3

3.5

4

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 C

To
ta

l d
ry

 w
ei

gh
t 

(g
)

C)

ba
ba

ba
ba

ba

a

ba

ba
ba

ba

b

0
50

100
150
200
250
300
350
400

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 C
Le

af
 a

re
a 

( c
m

 -2
)

D)

Figure 1. Height (A), number of leaves (B), leaf area (C), and total dry weight (D) of Liquidambar styraciflua plants due 
to the inoculation of ten arbuscular mycorrhizal consortia (M1 to M10) collected from a liquidambar forest at Sierra de 
Santa Marta, Veracruz, after eight months of inoculation. C = Control plants. Means ± Standard error (n= 5). Different 
letters between treatments indicate significant differences.

statistical significance between the different consortia, 
only consortia six shows statistical significance when 
compared to the control. L. styraciflua shows some 
dependency on species of Glomus and Acaulospora, 
genera found in the AMF consortium from sample 
number six.

Terminalia amazonia and Liquidambar styraciflua 
were the species with the highest response to AMF 
inoculation, while C. alliodora presented no significant 
growth response to inoculation. Furthermore, C. 
alliodora is a plant species naturally associated with 
Glomus, Entrophospora and Gigaspora fungi species 
(Caballero & Cortés, 1991; Cuervo & Rivas, 2007); 
however, under our experimental conditions, C. 
alliodora had only response to inorganic fertilization. 
In contrast, Cojoba arborea had greater growth 
response due to AMF inoculation than fertilizer 
application, but lower when compared to control plants. 
Unfortunately, there are scarce studies about the effect 
of AMF inoculation on this tree species. Abd-Alla et al. 
(2000) demonstrated that the dual inoculation of both 
Rhizobium and AMF in legumes increase the growth 
rate in C. arborea, similar to our present results. The 
limited response to fertilization by C. arborea might 
be due to salinization effects caused by the fertilizer 
application, or because this plant species requires higher 
fertilization at different growth stages as indicated by 
Cordero et al. (2003). In contrast, AMF inoculation 
resulted in positive effects on growth, which has not 
been extensively documented. 

The mycorrhizal inoculation demonstrates that 
the species present in the AMF consortium number 
six (Glomus and Acaulospora) are highly effective 
on stimulating the growth of three tree species (L. 
styraciflua, T. amazonia, and C. arborea) studied in this 
research. Low percentages of mycorrhizal colonization 
could limit the symbiosis benefits to plants due to 
reduced arbuscular interface, which is responsible for 
the nutrient exchange in both symbionts (Bago et al., 
2000). However, mycorrhizal colonization does not 
necessarily correlate with the beneficial effects on 
plants (Alarcón et al., 2007a; Alarcón et al., 2007b), 
since C. arborea was the tree species with the lowest 
mycorrhizal colonization percentage, but produced 
greater dry biomass when compared to the control. In 
contrast, C. alliodora did not showed significant growth 
promotion than control plants in spite of the AMF 
colonization was about 70%.

Our results suggest that native AMF have potential 
biotechnological applications in greenhouses where 
tropical tree species are propagated, but the expected 
results will depend on the tree species.

Conclusions

Liquidambar styraciflua harbours abundant AMF 
morphospecies that exert positive effects on this 
species growth at nursery conditions. The amount of 
AMF morphospecies found at field conditions was 
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higher than that identified at culture trap. The effect of 
inoculation with those AMF, particularly a consortium 
of Glomus and Acaulospora, on other three species 
depended on the species when compared to control 
or fertilized plants. Terminalia amazonia showed 
the highest response to the applied AMF consortium, 
whereas C. alliodora seems to be a plant species with 
low AMF dependence to promote seedling growth. The 
positive response of three of the four studied species 
suggests the possibility of carrying out technological 
developments based on native mycorrhizae, to be used 
in reforestation programs for rural areas.
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