Self-thinning dynamics in cork oak woodlands: providing a baseline for managing density

Teresa Fonseca, Luísa Monteiro, Teresa Enes, Adelaide Cerveira

Abstract


Aim of study: The study aims to evaluate the maximum potential stocking level in cork oak (Quercus suber L.) woodlands, using the ecologically-based size-density relationship of the self-thinning law.

Area of study: The study area refers to cork oak forests in mainland Portugal, distributed along its 18 districts from north to south.

Material and Methods: A dataset with a total of 2181 observations regarding pure cork oak stands was collected from the Portuguese Forest Inventory (NFI) databases and from research plots. The dataset was subjected to two filtering procedures, one more restrictive than the other, to select the stands presenting the higher stocking values. The two resulting subsets, with 116 and 36 observations, from 16 and 10 districts of mainland Portugal, respectively, were then used to assess and describe the allometric relationship between tree number and their mean diameter.

Main results: The allometric relationship was analysed and modelled using the log transformed variables. A slightly curvilinear trend was identified. Thus, a straight line and a curve were both fitted for comparison purposes. Goodness-of-fit statistics point out for a good performance when the data is set to the uppermost observed stocking values. A self-thinning line for cork oak was projected from the estimated relationship.

Research highlights: The self-thinning model can be used as an ecological approach to develop density guidelines for oak woodlands in a scenario of increasing cork demands. The results indicate that the recommendations being applied in Portugal are far below the maximal potential stocking values for the species. It is therefore of the utmost importance to review the traditional silvicultural guidelines and endorse new ones.


Keywords


Allometry; competition dynamics; maximum stand density; Quercus suber

Full Text:

PDF HTML XML

References


References

Aigbe HI, Omokhua GE, 2015. Model for Stand Density Management in Oban Forest Reserve. Nigeria. Int J Scientific Eng Res 6(7): 819–223.

APCOR, 2016. Portuguese Cork Association. Statistics. On line at http://www.apcor.pt/en/media-center/statistics/

Aronson J, Pereira JS, Pausas JG, 2009. Cork Oak Woodlands on the Edge. Ecology, Adaptive Management, and Restoration. J. Aronson, J. S. Pereira, and J. G. Pausas (Eds.). Soc Ecol Rest Int. Island Press. 352 pp. On line at http://www.uv.es/jgpausas/corkoak/cork-oak-book.pdf

Charru M, Seynave I, Morneau F, Rivoire M, Bontemps J, 2012. Significant differences and curvilinearity in the self-thinning relationships of 11 temperate tree species assessed from forest inventory data. Ann Forest Sci 69(2): 195–205. https://doi.org/10.1007/s13595-011-0149-0

Costa A, Pereira C, 2007. Manual de Instalação de Novos Povoamentos com Sobreiro. Aplicação de Boas Práticas nas Regiões da Chamusca e de Alcácer do Sal. ISA, ERENA, ANSUB, ACHAR, Lisboa. 30 pp. On line at http://www.achar.pt/UserFiles/Image/ACHAR/MINPS-final.pdf

Cruz P, Bascuñán A, 2014. Construcción de un esquema silvícola para Nothofagus dombeyi, usando área potencial aprovechable, índice de máxima densidad y variación del crecimiento diametral según densidad. Bosque (Valdivia) 35(2): 217–227. https://doi.org/10.4067/S0717-92002014000200009

DGRF, 2006. Good Management Practices in Cork Oak and Holm Oak. On line at

">http://www.icnf.pt/portal/florestas/gf/prdflo/mont/b-pratic-sb-az

DR, 2015. Diário da República, 1ª série- N.º215, 3 de novembro de 2015. Portaria nº 394/2015.

Fonseca TF, Parresol BR, 2001. A new model for cork weight estimation in Northern Portugal. Forest Ecol Manag 152(1-3):131–139. https://doi.org/10.1016/S0378-1127(00)00590-9

Harper JL, 1977. Population Biology of Plants. Academic Press, New York. 892 pp.

ICNF, 2013. IFN6 - Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. Instituto da Conservação da Natureza e das Florestas. Lisboa. 34 pp.

Lamey CA, 1893. Le Chêne Liège, Sa Culture et Son Exploitation. Berger-Levraut et C. (Ed), Paris.

Long J, 1985. A practical approach to density management. Forest Chron 61: 23–27. https://doi.org/10.5558/tfc61023-1

Luis JS, Fonseca TF, 2004. The allometric model in the stand density management of Pinus pinaster Ait. in Portugal. Ann Forest Sci 61(8): 807–814. https://doi.org/10.1051/forest:2004077

Marques CP, Fonseca TF, Aranha JT, Lopes DM, Abreu CG, Martins LM, Arnaldo P, Ribeiro EL, Silva C, 2000. Caracterização do estado actual dos montados de sobro no Nordeste Transmontano. Relatório Final do projeto PAMAF 4007. Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal. 223 pp.

Montero G, Cañellas I, 1999. Manual de reforestación del alcornoque (Quercus suber L.). MAPA-INIA, Spain. 103 pp.

Montero G, Cañellas I, 2003. Selvicultura de los alcornocales en España. Silva Lusitana 11(1): 1–19.

Montoya JMO, 1985. Aproximación al conocimiento del crecimiento y producción de Q. suber L. Cortiça 557: 479–484.

Montoya JMO, 1988. Los Alcornocales. 2ª Ed. Ministerio de Agricultura, Pesca y Alimentación. Serie Manuales Técnicos S.E.A., Madrid, Spain. 267 pp.

Myers RH, 1990. Classical and Modern Regression with Applications. 2nd Ed. PWS Publishers, USA. 359 pp.

Natividade JV, 1950. Subericultura. Ministério da Economia. Direção-Geral dos Serviços Florestais e Aquícolas. Lisboa, Portugal. 387 pp.

Paulo JA, Faias SP, Ventura-Giroux C, Tomé M, 2015. Estimation of stand crown cover using a generalized crown diameter model: application for the analysis of Portuguese cork oak stands stocking evaluation. Int Forest 9: 437–444. https://doi.org/10.3832/ifor1624-008

Pereira JS, Correia AV, Correia AC, Ferreira MT, Onofre N, Freitas H, Godinho F, 2006. Florestas e Biodiversidade. In F. D. Santos e P. Miranda (Eds.) Alterações Climáticas em Portugal. Cenários, Impactos e Medidas de Adaptação. Projecto SIAM II. Gradiva. Lisboa, Portugal. 506 pp.

Reineke LH, 1933. Perfecting a stand-density index for even aged forests. J Agric Res 46: 627–639.

Ribeiro N, 2015. Gestão sustentada dos montados de sobro. Soluções de Engenharia Florestal para a gestão adaptativa. Revista Ingenium 148: 76–80.

Río M, Pretzsch H, Alberdi I, Bielak K, Bravo F, Brunner A, Condés S, Ducey MJ, Fonseca T, von Lüpke N, et al., 2016. Characterization of the structure, dynamics, and productivity of mixed-species stands: Review and perspectives. Eur J Forest Res 135(1): 23–49. https://doi.org/10.1007/s10342-015-0927-6

Río M, Montero G, Bravo F, 2001. Analysis of diameter-density relationships and self-thinning in non-thinned even-aged Scots pine stands. Forest Ecol Manag 142(1-3): 79–87. https://doi.org/10.1016/S0378-1127(00)00341-8

Shaw JD, 2006. Reineke's Stand Density Index: Where are we and where do we go from here? Proceedings: Society of American Foresters 2005 National Convention. October 19-23, 2005, Ft. Worth, TX. [published on CD-ROM]: Society of American Foresters, Bethesda, MD. 13 pp. On line at http://www.fs.fed.us/rm/pubs_other/rmrs_2006_shaw_j006.pdf

Simões MP, Belo AF, Fernandes M, Madeira M, 2016. Regeneration patterns of Quercus suber according to montado management systems. Agroforest Syst 90(1): 107–115. https://doi.org/10.1007/s10457-015-9818-6

Tang S, Meng CH, Meng F, Wang YH, 1994. A growth and self-thinning model for pure even-age stands: theory and applications. Forest Ecol Manag 70(1): 67–73. https://doi.org/10.1016/0378-1127(94)90075-2

Zeide B, 1985. Tolerance and self-tolerance of trees. Forest Ecol Manag 13(3-4): 149–166. https://doi.org/10.1016/0378-1127(85)90031-3

Zeide B, 1987. Analysis of the 3/2 Power Law of Self-Thinning. Forest Sci 33: 517–537.

Zeide B, 2005. How to measure stand density. Trees 19: 1–14. https://doi.org/10.1007/s00468-004-0343-x




DOI: 10.5424/fs/2017261-10105

Webpage: www.inia.es/Forestsystems