Acacia melanoxylon in Argentina: heartwood content and its relationship with site, growth and age of the trees

Dora-Virginia Igartúa, Karen Moreno, Silvia-Estela Monteoliva

Abstract


Aims of study: To characterize the wood of Acacia melanoxylon in relation to its potential use in the construction and furniture industry, here we determined the heartwood and sapwood content and distribution within the stem and analyzed their relationship with the growing site, age and growth rate of the trees. Finally, we predicted heartwood content by two easy-to-measure variables.

Area of study: Buenos Aires, Argentina.

Methods: 20 trees aged between 9 and 32 years were sampled in four sites. Axial sampling was carried out at four heights of the stem (base, breast height, and 30% and 50% of the total height), and the heartwood content (percentage and volume) and sapwood content (cm) determined.

Results: The trees analyzed presented conical-shaped heartwood following the outline of the stem along all its commercial height. Within the stem, the highest volume of heartwood was observed at the basal region (53%) and up to 30% of total height, a feature observed in all the sites studied. The sapwood content was constant along the entire stem (2.18 cm). The age of the trees did not influence the heartwood content, whereas the environmental conditions provided by each site (heartwood/volume and heartwood/diameter growth positive ratios) did affect this feature.

Research highlights: The absolute amount of heartwood was driven by growth rate, due to the forest structure of non-uniform age. The heartwood volume can be estimated through fitting linear equations (R2 0.78 - 0.89) with two easily measurable variables such as diameter at breast height and tree height.


Keywords


axial variation; general linear models; heartwood; sapwood; wood quality

Full Text:

PDF HTML XML

References


References

Bamber RK, 1976. Heartwood, its function and formation. Wood Sci Technol 10: 1–8. https://doi.org/10.1007/BF00376379

Bamber RK, Fukazawa K, 1985. Sapwood and heartwood: a review. For Abst 46: 567–580.

Berthier S, Kokutse AD, Stokes A, Fourcaud T, 2001. Irregular Heartwood Formation in Maritime Pine (Pinus pinaster Ait): Consequences for Biomechanical and Hydraulic Tree Functioning. Ann Botany 87: 19-25. https://doi.org/10.1006/anbo.2000.1290

Bradbury GJ, 2005. A comparison of timber quality of blackwood grown in young swamp forest, fenced regeneration, and a plantation. Tasforest 16: 95-109.

Bradbury G, Potts B, Beadle C, 2011. Genetic and environmental variation in wood properties of Acacia melanoxylon. Ann For Sci 68(8): 1363-1373. https://doi.org/10.1007/s13595-011-0115-x

Cailliez F, 1980. Estimación del Volumen Forestal y predicción del rendimiento. Vol 1. Estudio FAO: Montes 22/1. Organización de las Naciones Unidas para la Agricultura y la Alimentación Roma, Italia.

Climent J, Chambel MR, Perez E, Gil L, Pardos JA, 2002. Relationship between heartwood radius and early radial growth, tree age and climate in Pinus canariensis. Can J Forest Res 32: 103-111. https://doi.org/10.1139/x01-178

Climent J, Chambel MR, Gil L, Pardos JA, 2003. Vertical heartwood variation patterns and prediction of heartwood volume in Pinus canariensis Sm. Forest Ecol Manag 174: 203-211. https://doi.org/10.1016/S0378-1127(02)00023-3

Daniel PW, Helms, UE, Baker FS, 1982. Principios de Silvicultura. Libros MacGRAW-HILL, México.

DPE, 2005a. Dirección Provincial de Estadística. Ministerio de Economía de la provincia de Buenos Aires. Índice Provincial de Actividad de la Construcción por zonas. http://www.estadistica.ec.gba.gov.ar/dpe/index.php/economia [june 2016]

DPE, 2005b. Dirección Provincial de Estadística. Ministerio de Economía de la provincia de Buenos Aires. Permisos de edificación por Municipio. http://www.estadistica.ec.gba.gov.ar/dpe/index.php/economia/construccion/permisos-de-edificacion [june 2016]

Gominho J, Pereira H, 2000. Variability of heartwood content in plantation-grown Eucalyptus globulus Labill. Wood Fib Sci 32(2): 189-195.

Gominho J, Pereira H, 2005. The influence of tree spacing in heartwood content in Eucalyptus globulus Labill. Wood Fib Sci 37(4): 382-390.

Haslett AN, 1986. Properties and utilization of exotic speciality timbres grown in New Zealand. Part II: Australian blackwood Acacia melanoxylon R.Br. New Zealand Forest, Forest Research Institute, FRI Bulletin Nº 119 (2).

Harrison CM, 1974. Heartwood content patterns in Acacia melanoxylon in the Southern Cape. Forestry in South Africa. 15: 31-34.

Harrison CM, 1975. Hearthwood colour parterns in South Africa Acacia melanoxylon. Forestry in South Africa 17: 49-56.

Hillis WE, 1987. Heartwood and tree exudates. Springer Verlag, Berlín. https://doi.org/10.1007/978-3-642-72534-0

Igartúa DV, Monteoliva S, Piter JC, 2009. Estudio de algunas propiedades físicas de la madera de Acacia melanoxylon en Argentina. Revista Madera, Ciencia y Tecnología 11 (1): 3-18.

Igartúa DV, Monteoliva S, 2009. Basic wood density of Acacia melanoxylon R.Br related to sample tree height, tree and site. Forest Syst 18(1): 101-110. https://doi.org/10.5424/fs/2009181-01054

Igartúa DV, 2013. Propiedades xilotecnológicas de Acacia melanoxylon implantada en el sudeste de la Provincia de Buenos Aires-Argentina. Doctoral thesis. Universidad Nacional de La Plata. http://sedici.unlp.edu.ar/handle/10915/33417

Igartúa DV, Moreno K, Piter JC, Monteoliva S, 2015. Densidad y propiedades mecánicas de la madera de Acacia melanoxylon implantada en Argentina. Maderas Ciencia y Tecnología 17(4): 809-820. https://doi.org/10.4067/s0718-221x2015005000070

Knapic S, Pereira H, 2005. Within-tree variation of heartwood and ring width in maritime pine (Pinus pinaster Ait.). Forest Ecol Manag 210(1-3): 81-89. https://doi.org/10.1016/j.foreco.2005.02.017

Knapic S, Tavares F, Pereira H, 2006. Heartwood and sapwood variation in Acacia melanoxylon R. Br. trees in Portugal. Forestry 79(4): 371-380. https://doi.org/10.1093/forestry/cpl010

Lourenço A, Baptista I, Gomino J, 2008. The influence of heartwood on the pulping properties of Acacia melanoxylon. J Wood Sci 54: 464-469. https://doi.org/10.1007/s10086-008-0972-6

Maslin BR, Pedley L, 1982a. The distribution of Acacia (Leguminosae: Mimosoideae) in Australia. Part 1. Species distribution maps. Western Aust Herbarium Res Notes Nº 6: 1-128.

Maslin BR, Pedley L, 1982b. The distribution of Acacia (Leguminosae: Mimosoideae) in Australia. Part 2. Lists of species occurring in 1º x 1.5º grid cells. Western Aust Herbarium Res Notes Nº 6: 129-171.

Miranda I, Gominho J, Lourenço A, Pereira H, 2009. Variation of heartwood and sapwood in 18-year-old Eucalyptus globulus trees grown with different spacing. Trees 23: 367-372. https://doi.org/10.1007/s00468-008-0285-9

Monteoliva S, Igartúa DV, Matta EJ, 2009. Color de la madera de Acacia melanoxylon implantada en Buenos Aires, Argentina. Bosque 30(3): 192-197.

Monteoliva S, Igartúa DV, 2010. Variación anatómica de la madera de Acacia melanoxylon implantada en el sudeste de la provincia de Buenos Aires. Rev Fac Agr La Plata 109(1): 1-7.

Monteoliva S, Ciganda V, Igartúa DV, 2012. Contenido de duramen y de albura en Eucalyptus globulus y Acacia melanoxylon implantadas en Argentina. Maderas. Ciencia y Tecnol 14(1): 53-63. https://doi.org/10.4067/S0718-221X2012000100005

Nicholas ID, Young GD, Gifford HH, 1994. Wood properties of Acacia melanoxylon: Variation within and between four seedlots. Proc the Australian Forest Growers Conference, 1994, Launceston, Tasmania: 105-110 pp.

Nicholas I, Brown I, 2002. BLACKWOOD- A Handbook for Growers and Users. Forest Research Bulletin No. 225. New Zealand Forest Research, Rotorua, New Zealand. 100 pp.

Prodan M, Peters R, Cox F, Real P, 1997. Mensura forestal. San José, Costa Rica. IICA.

Santos A, Simoes R, Tavares M, 2013. Variation of some wood macroscopic properties along the stem of Acacia melanoxylon R. Br. adult trees in Portugal. Forest Syst 22(3): 463-470. https://doi.org/10.5424/fs/2013223-02421

Searle S, 2000. Acacia melanoxylon - A review of variation among planted trees. Aust Forestry 63(2): 79-85. https://doi.org/10.1080/00049158.2000.10674818

Searle SD, Owen JV, 2005. Variation in basis wood density and percentage heartwood in temperate Australian Acacia species. Aust Forestry 68: 126-136. https://doi.org/10.1080/00049158.2005.10674956

Stokes A, Berthier S, 2000. Irregular heartwood formation in Pinus pinaster Ait. is related to eccentric, radial, stem growth. Forest Ecol Manag 135(1-3): 115-121. https://doi.org/10.1016/S0378-1127(00)00303-0

Tasmanian Timber Promotion Board, 2012. Timber Research Unit, University of Tasmania. http://www.tastimber.tas.gov.au [may 2016].

Taylor AM, Gartner B, Morrel JJ, 2002. Hearthwood formation and natural durability – A review. Wood Fib Sci 34(4): 587-611.

Zhang SY, 1997. Wood Quality: Its Definition, Impact, and Implications for Value-Added Timber Management and End Uses. Proc Timber Management Toward Wood Quality and End-Product Value. CTIA/IUFRO International Wood Quality Workshop. Part I. 22-28 pp.

Zobel BJ, Jett JB, 1995. Genetics of wood production. Springer-Verlag, Berlín. https://doi.org/10.1007/978-3-642-79514-5




DOI: 10.5424/fs/2017261-10195

Webpage: www.inia.es/Forestsystems