Incorporating stand level risk management options into forest decision support systems

  • Kyle Eyvindson University of Jyvaskyla, Dept. of Biol. Environ. Sci., P.O. Box 35, 40014 University of Jyvaskyla
  • Rami Saad Swedish University of Agricultural Sciences, Dept. of Forest Resour. Manage., Skogsmarksgränd, SE-901 83, Umeå
  • Ljusk Ola Eriksson Swedish University of Agricultural Sciences, Dept. of Forest Resour. Manage., Skogsmarksgränd, SE-901 83, Umeå
Keywords: risk preferences, forest management, inventory error, value at risk, conditional value at risk

Abstract

Aim of study: To examine methods of incorporating risk and uncertainty to stand level forest decisions.

Area of study: A case study examines a small forest holding from Jönköping, Sweden.

Material and methods: We incorporate empirically estimated uncertainty into the simulation through a Monte Carlo approach when simulating the forest stands for the next 100 years. For the iterations of the Monte Carlo approach, errors were incorporated into the input data which was simulated according to the Heureka decision support system. Both the Value at Risk and the Conditional Value at Risk of the net present value are evaluated for each simulated stand.

Main results: Visual representation of the errors can be used to highlight which decision would be most beneficial dependent on the decision maker’s opinion of the forest inventory results. At a stand level, risk preferences can be rather easily incorporated into the current forest decision support software.

Research highlights: Forest management operates under uncertainty and risk. Methods are available to describe this risk in an understandable fashion for the decision maker.

Downloads

Download data is not yet available.

References

Artzner P, Delbaen F, Eber JM, Heath D, 1999. Coherent measures of risk. Math Financ 9 (3): 203-228. https://doi.org/10.1111/1467-9965.00068

Borges JG, Nordstrom E-M, Garcia-Gonzalo J, Hujala T, Trasobares A, 2014. Computer-based tools for supporting forest management. The experience and the expertise world-wide. Report of Cost Action FP 0804 Forest Management Decision Support Systems (FORSYS). Dept. of Forest Resource Management, Swedish Univ. of Agricultural Sciences. Umeå. Sweden.

Cooper A, Reimann R, Cronin D, 2007. About Face 3: The essentials of interaction design. Wiley, Indianapolis, IN, USA. 610 pp.

Duffie D, Pan J, 1997. An overview of value at risk. J Deriv 4 (3): 7-49. https://doi.org/10.3905/jod.1997.407971

Durbach IN, Stewart TJ, 2012. Modeling uncertainty in multi-criteria decision analysis. Eur J Oper Res 223 (1): 1-14. https://doi.org/10.1016/j.ejor.2012.04.038

Duvemo K, Lämås T, 2006. The influence of forest data quality on planning processes in forestry. Scand J Forest Res 21: 327-339. https://doi.org/10.1080/02827580600761645

Ehlers S, Grafström A, Nyström K, Olsson H, Ståhl G, 2013. Data assimilation in stand-level forest inventories. Can J For Res 43(12): 1104-1113. https://doi.org/10.1139/cjfr-2013-0250

Eriksson LO, Backéus S, Garcia F, 2012. Implications of growth uncertainties associated with climate change for stand management. Eur J For Res 131 (4): 1199-1209. https://doi.org/10.1007/s10342-011-0591-4

Eyvindson K, Cheng Z, 2016. Implementing the conditional value at risk approach for even-flow forest management planning. Can J For Res 46 (5): 637-644. https://doi.org/10.1139/cjfr-2015-0270

Ferreira L, Constantino M, Borges JG, 2014. A stochastic approach to optimize maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal. Ann Oper Res 219 (1): 359-377. https://doi.org/10.1007/s10479-011-0845-z

Forsell N, Eriksson LO, 2014. Influence of temporal aggregation on strategic forest management under risk of wind damage. Ann Oper Res 219 (1): 397-414. https://doi.org/10.1007/s10479-011-0966-4

Gunn E, 2009. Some perspectives on strategic forest management models and the forest products supply chain. INFOR 47 (3): 261-272. https://doi.org/10.3138/infor.47.3.261

Haara A, Leskinen P, 2009. The assessment of the uncertainty of updated stand-level inventory data. Silva Fenn 43 (1): 87-112. https://doi.org/10.14214/sf.219

Hahn WA, Härtl F, Irland LC, Kohler C, Moshammer R, Knoke T, 2014. Financially optimized management planning under risk aversion results in even-flow sustained timber yield. Forest Pol Econ 42: 30-41. https://doi.org/10.1016/j.forpol.2014.02.002

Hirsch F, Korotkov A, Wilnhammer M, 2007. Private forest ownership in Europe. Unasylva 228: 23-25.

Johnson KN, Scheurman HL, 1977. Techniques for prescribing optimal timber harvest and investment under different objectives. Discussion and synthesis. Monograph 18, a supplement to Forest Science, vol. 23.

Kangas A, 2010. Value of forest information. Eur J Forest Res129: 863-874. https://doi.org/10.1007/s10342-009-0281-7

Kangas A, Hartikainen M, Miettinen K, 2014. Simultaneous optimization of harvest schedule and measurement strategy. Scand J Forest Res 29: 224-233. https://doi.org/10.1080/02827581.2013.823237

King AJ, Wallace SW, 2012. Modeling with stochastic programming. Springer, NY. https://doi.org/10.1007/978-0-387-87817-1

Knight FH, 1921. Risk, uncertainty and profit. Hart, Schaffner and Marx, NY.

Markowitz H, 1952. Portfolio selection. J Finance 7 (1): 77-91.

Mäkinen A, Kangas A, Mehtätalo L, 2010. Correlations, distributions and trends of inventory errors and their effects on forest planning. Can J For Res 40 (7): 1386-1396. https://doi.org/10.1139/X10-057

Mönkkönen M, Juutinen A, Mazziotta A, Miettinen K, Podkopaev D, Reunanen P, Salminen H, Tikkanen OP, 2014. Spatially dynamic forest management to sustain biodiversity and economic returns. J Environ Manag 134: 80-89. https://doi.org/10.1016/j.jenvman.2013.12.021

Nawrocki DN, 1999. A brief history of downside risk measures. J Invest 8 (3): 9-25. https://doi.org/10.3905/joi.1999.319365

Pasalodos-Tato M, Mäkinen A, Garcia-Gonzalo J, Borges JG, Lämås T, Eriksson LO, 2013. Review. Assessing uncertainty and risk in forest planning and decision support systems: review of classical methods and introduction of new approaches. Forest Syst 22 (2): 282-303. https://doi.org/10.5424/fs/2013222-03063

Peura M, Triviño M, Mazziotta A, Podkopaev D, Juutinen A, Mönkkönen M, 2016. Managing boreal forests for the simultaneous production of collectable goods and timber revenues. Silva Fenn 50 (5): 1-17 . https://doi.org/10.14214/sf.1672

Robinson AP, McLarin M, Moss I, 2016. A simple way to incorporate uncertainty and risk into forest harvest scheduling. For Ecol Manage 359: 11-18.

Rockafellar RT, Uryasev S, 2000. Optimization of conditional value-at-risk. J Risk 2 (3): 21-42. https://doi.org/10.21314/JOR.2000.038

Saad R, Eyvindson K, Gong P, Lämås T, Ståhl G, 2017. Potential of using data assimilation to support forest planning. Can J For Res 47 (5): 690-695. https://doi.org/10.1139/cjfr-2016-0439

Siitonen M, 1993. Experiences in the use of forest management planning models. Silva Fenn 27 (2):167-178. https://doi.org/10.14214/sf.a15670

Ståhl G, Carlsson D, Bondesson L, 1994. A method to determine optimal stand data acquisition policies. For Sci 40: 630-649.

Wikström P, Edenius L, Elfving B, Eriksson LO, Lämås T, Sonesson J, Öhman K, Wallerman J, Waller C, Klintebäck F, 2011. The Heureka forestry decision support system: An overview. Math Comp For Nat Res Sci 3 (2): 87-95.

Published
2018-01-31
How to Cite
Eyvindson, K., Saad, R., & Eriksson, L. O. (2018). Incorporating stand level risk management options into forest decision support systems. Forest Systems, 26(3), e013. https://doi.org/10.5424/fs/2017263-10445
Section
Research Articles