Wood density and anatomy of three Eucalyptus species: implications for hydraulic conductivity

Antonio J. Barotto, Silvia Monteoliva, Javier Gyenge, Alejandro Martínez-Meier, Karen Moreno, Natalia Tesón, María Elena Fernández


Aim of the study: To characterize wood anatomical traits of three Eucalyptus species that differ in wood density and ecological requirements, and to examine the relationships between some anatomical features, wood density, and theoretical xylem hydraulic conductivity (Ks).

Area of study: We analyzed 86 trees from three sites of Argentina (Entre Ríos and Buenos Aires Provinces).

Methods: The sampled trees were Eucalyptus globulus, E. grandis and E. viminalis ranging from 11 to 15 years old. One stem disc was cut from each tree to determine wood density and identify quantitative anatomical features of vessels and fibers. Vessel composition (S, size - to-number ratio, a measure of vessel size distribution) and lumen fraction (F, the total sapwood area available for water transport) were estimated.

Results: E. grandis, the species with the highest growth rates, presented the highest theoretical Ks. This was associated with anatomical features such as a high density of wide vessels resulting in high F. On the other hand, E. viminalis, the species with the lowest growth rates and highest resistance to environmental stress, showed lower Ks as a result of a low density of wide vessels. These two species differed not only greatly in wood density but also in fiber characteristics. In the case of E. globulus, vessels were relatively narrow, which resulted in the lowest theoretical Ks, fibers were small, and wood density intermediate.

Research highlights: F had greater influence on Ks than S. The anatomical characteristics and wood density could only partly explain the differential growth or resistance to stress of the studied species.


functional wood anatomy; lumen fraction; theoretical hydraulic conductivity; vessel composition; wood density

Full Text:




Barotto AJ, Fernández ME, Gyenge J, Martínez Meier A, Meyra A, Monteoliva S, 2016. First insights into the functional role of vasicentric tracheids and parenchyma in Eucalyptus species with solitary vessels: do they contribute to xylem efficiency or safety? Tree Physiol 36(12): 1485-1497. https://doi.org/10.1093/treephys/tpw072

Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA, 2010. The dynamics of embolism repair in xylem: In vivo visualizations using high-resolution computed tomography. Plant Physiol 154(3): 1088-1095. https://doi.org/10.1104/pp.110.162396

Brodribb TJ, Holbrook NM, Hill RS, 2005. Seedling growth in conifers and angiosperms: Impacts of contrasting xylem structure. Aust J Bot. 53(8): 749-755. https://doi.org/10.1071/BT05049

Charrier G, Torres-Ruiz JM, Badel E, Burlett R, Choat B, Cochard H, Delmas CEL, Domec JC, Jansen S, King A, et al., 2016. Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension. Plant Physiol 172(3): 1657-1668. https://doi.org/10.1104/pp.16.01079

Ferrere P, Lupi AM, Boca R, Nakama V, Alfieri A, 2008. Biomasa en plantaciones de Eucalyptus viminalis Labill. de la provincia de Buenos Aires, Argentina. Ciência Florestal 18: 293-307. https://doi.org/10.5902/19805098440

Gartner BL, 1995. Patterns of xylem variation within a tree and their hydraulic and mechanical consequences. In: BL Gartner (ed.), Plant Stems: Physiological and Functional Morphology: 125-149. Academic Press, New York. https://doi.org/10.1016/b978-012276460-8/50008-4

Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA, 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126(4): 457-461. https://doi.org/10.1007/s004420100628

Hacke UG, Sperry JS, 2003. Limits to xylem refilling under negative pressure in Laurus nobilis and Acer negundo. Plant, Cell Environ 26(2): 303-311. https://doi.org/10.1046/j.1365-3040.2003.00962.x

Hubbard RM, Ryan MG, Stiller V, Sperry JS, 2001. Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell Environ 24 (1): 113-121. https://doi.org/10.1046/j.1365-3040.2001.00660.x

Igartúa DV, Monteoliva S, 2010. Densidad básica, longitud de fibras y crecimiento en dos procedencias de Eucalyptus globulus en Argentina. Bosque 31(2): 150-156. https://doi.org/10.4067/S0717-92002010000200008

Iglesias-Trabado G, Wilstermann D, 2009. Eucalyptus universalis. Global cultivated eucalypt forests map 2009. On line: http://git-forestry-blog.blogspot.com/2008/09/eucalyptus-global-map-2008-cultivated.html.

Jacobsen AL, Ewers FW, Pratt RB, Paddock III WA, Davis SD, 2005. Do xylem fibers affect vessel cavitation resistance? Plant Physiol. 139(1): 546-556. https://doi.org/10.1104/pp.104.058404

Kondoh S, Yahata H, Nakashizuka T, Kondoh M, 2006. Interspecific variation in vessel size, growth and drought tolerance of broad-leaved trees in semi-arid regions of Kenya. Tree Physiol 26(7): 899-904. https://doi.org/10.1093/treephys/26.7.899

MAA (Ministerio de Asuntos Agrarios, Provincia de Buenos Aires), 2010. Inventario de macizos forestales de Eucalyptus globulus Labill. en el Sudeste de la Provincia de Buenos Aires. Edited by Gobierno de la Provincia de Buenos Aires, with the technical assistance of the Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Argentina. 30 pp.

Maherali H, Pockman WT, Jackson RB, 2004. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85(8): 2184-2199. https://doi.org/10.1890/02-0538

Martinez‐Meier A, Sanchez L, Pastorino M, Gallo L, Rozenberg P, 2008. What is hot in tree rings? The case of surviving Douglas‐firs to the 2003 drought and heat wave. Forest Ecol Manag 256(4): 837-843. https://doi.org/10.1016/j.foreco.2008.05.041

Martinez‐Meier A, Sanchez L, Dalla-Salda G, Pastorino M, Gallo L, Rozenberg P, 2009. Ring density record of phenotypic plasticity and adaptation to drought in Douglas‐fir. Forest Ecol Manag 258(5):860-867. https://doi.org/10.1016/j.foreco.2009.03.021

Meinzer FC, McCulloh KA, 2013. Xylem recovery from drought-induced embolism: Where is the hydraulic point of no return? Tree Physiol. 33(4): 331-334. https://doi.org/10.1093/treephys/tpt022

Monteoliva S, Barotto AJ, Fernández ME, 2015. Anatomía y densidad de la madera en Eucalyptus: variación interespecífica e implicancia en la resistencia al estrés abiótico. Revista Facultad Agronomía, La Plata 114(2): 209-217.

Monteoliva S, Barotto AJ, Alarcón P, Tesón N, Fernández ME, 2017. Densidad de la madera como variable integradora de la anatomía del leño: análisis de ramas y fuste en cuatro especies de Eucalyptus. Revista Facultad Agronomía, La Plata 116 (en prensa).

Naidoo S, Zbonák A, Ahmed F, 2006. The effect of moisture availability on wood density and vessel characteristics of Eucalyptus grandis in the warm temperate region of South Africa. In: S Kurjatko, J Kúdela & R Lagana (eds.), Proceedings of the 5th International Symposium on Wood Structure and Properties: pp. 117-122. Arbora Publishers, Zvolen, Slovakia.

Pfautsch S, Harbusch M, Wesolowski A, Smith R, Macfarlane C, Tjoelker MG, Reich PB, Adams MA, 2016. Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecology Letters 19(3): 240-248. https://doi.org/10.1111/ele.12559

Pockman WT, Sperry JS, 2000. Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation. Am J Bot. 87(9): 1287-1299. https://doi.org/10.2307/2656722

Pratt RB, Jacobsen AL, Ewers FW, Davis SD, 2007. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the california chaparral. New Phytol. 174(4): 787-798. https://doi.org/10.1111/j.1469-8137.2007.02061.x

Salleo S, Trifilò P, Lo Gullo MA, 2006. Phloem as a possible major determinant of rapid cavitation reversal in stems of Laurus nobilis (laurel). Functional Plant Biol 33(11): 1063-1074. https://doi.org/10.1071/FP06149

Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T, 2004. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in panamanian forest canopy trees. Oecologia 140(4): 543-550. https://doi.org/10.1007/s00442-004-1624-1

Tesón N, Monteoliva S, Licata J, Fernandez ME, 2011. Ecophysiological processes and wood anatomy related to growth and drought resistance in genotypes of Eucalyptus grandis. In: Proccendings of IUFRO 2011 Eucalyptus: Improvement and culture of Eucalyptus. IUFRO Working Group 2.08.03. November 14-18, Porto Seguro, Brazil.

Tesón N, Fernández ME, Licata J, 2012. Resultados preliminares sobre la variación en vulnerabilidad a la cavitación por sequía en clones de Eucalyptus grandis. Congreso IUFRO 2012: "Eucaliptos mejorados para aumentar la competitividad del sector forestal en América Latina". November 22-23. Pucón, Chile.

Tyree MT, Ewers FW, 1991. Tansley Review No. 34. The hydraulic architecture of trees and other woody plants. New Phytologist 119(3): 345-360. https://doi.org/10.1111/j.1469-8137.1991.tb00035.x

Tyree MT, Salleo S, Nardini A, Lo Gullo MA, Mosca R, 1999. Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm? Plant Physiol 120(1): 11-21. https://doi.org/10.1104/pp.120.1.11

Vander Willigen C, Pammenter NW, 1998. Relationship between growth and xylem hydraulic characteristics of clones of Eucalyptus spp. at contrasting sites. Tree Physiol. 18(8-9): 595-600. https://doi.org/10.1093/treephys/18.8-9.595

Villegas MS, Rivera SM, 2002. Revisión xilológica de las principales especies del género Eucalyptus L'Herit. cultivadas en Argentina. Revista Facultad Agronomía, La Plata. 105(1): 9-28.

Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J, 2009. Global wood density database. Dryad. On line: http://hdl.handle.net/10255/dryad.235.

Zanne AE, Westoby M, Falster DS, Ackerly DA, Loarie SR, Arnold SEJ, Coomes D, 2010. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Amer J Bot 97(2): 207-215. https://doi.org/10.3732/ajb.0900178

DOI: 10.5424/fs/2017261-10446

Webpage: www.inia.es/Forestsystems