Decline in holm oak coppices (Quercus ilex L. subsp. ballota (Desf.) Samp.): biometric and physiological interpretations

Rafael Serrada, Valentín Gómez-Sanz, María J. Aroca, Javier Otero, J. Alfredo Bravo-Fernández, Sonia Roig

Abstract


Aim of the study: To analyse the decline in aged holm oak coppice forests as regards above-ground and below-ground fractions and physiological features.

Area of study: Centre of the Iberian Peninsula (Guadalajara province).

Material and methods: 26 pairs of holm oak stools with different vigour but with similar site and structural characteristics within each pair were selected. Morphological (basal area, number of stools, maximum height) and physiological traits (leaf water potential, stomatal conductance) of the standing stools were assessed. Their aerial and underground parts were extracted and different size fractions of both their above and below-ground biomass were quantified. Linear mixed models were built to test the effect of ’Stool vigour’ on the mean behaviour of the measured variables. Additionally, for the aerial part, linear regressions between the weights of the different size fractions and the basal area at breast height were performed using ‘Stool vigour’ as a fixed factor.

Main results: For the same site, root depth, and number and diameter of shoots than good vigour stools, poor vigour stools displayed: lower predawn water potential, greater leaf mass per unit of area; lower total leaf area; lower above-ground biomass (in total as well as per fractions); lower fine roots biomass; lower proportion of leaf biomass and a greater proportion of biomass of both all roots and those with diameter 2-7 cm.

Research highlights: The above-ground physiological and morphological characteristics of declined stools are interpreted as poorer adaptation to site conditions. Root system architecture was found to be relevant to explain this behaviour.

Keywords


decay; stool; above-ground biomass; below-ground biomass; drought; global change

Full Text:

PDF HTML XML

References


Abrahamson W, Caswell H, 1982. On the comparative allocation of biomass, energy and nutrients in plants. Ecology 63: 982-991. https://doi.org/10.2307/1937238

Agren G, Ingestad T, 1987. Root/shoot ratios as a balance between nitrogen productivity and photosynthesis. Plant Cell Environ 10: 579-586.

Alberto DM, Elvir JA, 2008. Acumulación y fijación de carbono en biomasa aérea de Pinus oocarpa en bosques naturales en Honduras. Invest Agrar: Sist Recur For 17 (1): 67-78.

Albeza E, Arques E, Bernabé A, Escarré A, Jiménez-Ortiz T, Lledó MJ, Sánchez JR, 1999. Experiencias para la mejora de masas forestales. Programa de investigación y desarrollo en relación con la restauración de la cubierta vegetal: Reunión de Coordinación, Castellón, September 22-24. pp: 21-31.

Aussenac G, Granier A, Bréda N, 1995. Effets des modifications de la structure du couvert forestier sur le bilan hydrique, l'état hydrique des arbres et la croissance. Rev For Fr 47 (1): 55-62. https://doi.org/10.4267/2042/26624

Barbeta A, Ogaya R, Peñuelas J, 2013. Dampening effects of long-term experimental drought on growth and mortality rates of a Holm oak forest. Glob Chang Biol 19: 3133-3144. https://doi.org/10.1111/gcb.12269

Bravo F (coord.), 2007. El papel de los bosques españoles en la mitigación del cambio climático. Fundación Gas Natural, Barcelona, Spain. 315 pp.

Bravo Fernández JA, Roig Gómez S, Serrada Hierro R, 2008. Selvicultura en montes bajos y medios de encina (Quercus ilex L.), rebollo (Q. pyrenaica Willd.) y quejigo (Q. faginea Lam.): tratamientos tradicionales, situación actual y principales alternativas. In: Compendio de Selvicultura Aplicada en España; Serrada R, Montero G, Reque J (eds,). pp: 657-745. INIA & FUCOVASA, Madrid.

Bravo-Fernández JA, Mutke S, Barrero D, Martinez G, Serrada R, Roig S, 2013. Resalveos de conversión sobre tallares de encina: ¿qué ha pasado 15 años después? 6º Congreso Forestal Español, Vitoria, June 10-14.

Bussotti F, Bettini D, Grossoni P, Mansuino S, Nibbi R, Soda C, Tani C, 2002. Structural and functional traits of Quercus ilex in response to water availability. Environ Exp Bot 47: 11-23. https://doi.org/10.1016/S0098-8472(01)00111-3

Camarero JJ, Lloret F, Corcuera L, Pe-uelas J, Gil-Pelegrín E, 2004. Cambio global y decaimiento del bosque. In: Ecología del bosque mediterráneo en un mundo cambiante; Valladares F (ed). pp: 397-423. Ministerio de Medio Ambiente, EGRAF S.A., Madrid.

Canadell J, Roda F, 1991. Root biomass of Quercus ilex in a montane Mediterranean forest. Can J For Res 21: 1771-1778. https://doi.org/10.1139/x91-245

Canadell J, Djema A, López B, Lloret F, Sabaté S, Siscart D, Gracia C, 1999. Structure and dynamics of the root system. In: Ecology of Mediterranean evergreen oak forests; Rodà F, Retana J, Gracia C, Bellot J (eds). pp: 47-59. Springer, Berlin. https://doi.org/10.1007/978-3-642-58618-7_4

Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez G, Peñuelas J, 2011. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci USA 108: 1474-1478. https://doi.org/10.1073/pnas.1010070108

Cañellas I, San Miguel A, 2000. Biomass of root and shoot systems of Quercus coccifera shrublands in Eastern Spain. Ann For Sci 57: 803-810. https://doi.org/10.1051/forest:2000160

Corcuera L, Camarero JJ, Gil-Pelegrín E, 2004. Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees 18 (1): 83-92. https://doi.org/10.1007/s00468-003-0284-9

Cotillas M, Espelta JM, Sánchez-Costa E, Sabaté S, 2016. Above-ground and below-ground biomass allocation patterns in two Mediterranean oaks with contrasting leaf habit: an insight into carbon stock in young oak coppices. Eur J For Res 135: 243-252. https://doi.org/10.1007/s10342-015-0932-9

Cutini A, Mascia V, 1996. Silvicultural treatment of holm oak (Quercus ilex L.) coppices in Southern Sardinia: effects of thinning on water potential, transpiration and stomatal conductance. Ann Ist Sper Selvic 27: 47-53.

de Olazabal L, 1883. Ordenación y valoración de montes. Imprenta de Moreno y Rojas, Madrid. 517 pp.

Ducrey M, 1992. Quelle sylviculture et quel avenir pour les taillis de chêne vert (Quercus ilex L.) de la région méditerraneénne française. Rev For Fr 44 (1): 12-33. https://doi.org/10.4267/2042/26291

Ducrey M, Huc R, 1999. Effets de l'éclaircie sur la croissance et le fonctionnement écophysiologique d'un taillis de chêne vert. Rev For Fr 2: 326-340. https://doi.org/10.4267/2042/5440

EEA, 2008. Impacts of Europe's changing climate - 2008. An indicator-based assessment (EEA Report No 4/2008). Office for Official Publications of the European Communities, Luxembourg. 246 pp.

Eichhorn J, Szepesi A, Ferretti M, Durrant D, Roskams P, 2006. Part II: Visual Assessment of Crown Condition. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. pp: 69. UNECE ICP Forests Programme Coordinating Centre, Hamburg.

Eichhorn J, Roskams P, Ferreti M, Mues V, Szepesi A, Durrant D, 2010. Manual part IV: Visual assessment of crown condition and damaging agents. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. pp: 49. UNECE ICP Forests Programme Coordinating Centre, Hamburg.

Gárate M, Blanco JA, 2013. Importancia de la caracterización de la biomasa de raíces en la simulación de ecosistemas forestales. Ecosistemas 22 (3): 66-73. https://doi.org/10.7818/ECOS.2013.22-3.10

Gea-Izquierdo G, Martín-Benito D, Cherubini P, Cañellas I, 2009. Climate-growth variability in Quercus ilex L. west Iberian open woodlands of different stand density. Ann For Sci 66: 802. https://doi.org/10.1051/forest/2009080

Gower S, Reich B, Son Y, 1993. Canopy dynamics and above-ground production for five tree species with different leaf longevities. Tree Physiol 12 (4): 327-345. https://doi.org/10.1093/treephys/12.4.327

Gracia C, Bellot J, Sabaté S, Albeza E, Djema A, León B, López B, Martínez JM, Ruiz I, Tello E, 1997. Análisis de la respuesta de Quercus ilex L. a tratamientos de resalveo selectivo. In: La restauración de la cubierta vegetal de la Comunidad Valenciana. pp: 547-601. Fundación Centro de Estudios Ambientales del Mediterráneo.

Gracia C, Sabaté S, López B, 1999a. Aplicación de la relación funcional entre la biomasa aérea y subterránea para una gestión del encinar encaminada a su conversión en monte alto. Programa de investigación y desarrollo en relación con la restauración de la cubierta vegetal: Reunión de Coordinación, Castellón (Spain), September 22-24. pp: 190-201.

Gracia C, Sabaté S, Martínez J M, Albeza E, 1999b. Functional responses to thinning. In: Ecology of Mediterranean evergreen oak forests; Rodà F et al. (eds). pp: 329-338. Springer, Germany. https://doi.org/10.1007/978-3-642-58618-7_23

Gracia C, Tello E, Sabaté S, Bellot J, 1999c. GOTILWA: an integrated model of water dynamics and forest growth. In: Ecology of Mediterranean evergreen oak forests; Rodà F et al. (eds). pp: 163-179. Springler, Germany. https://doi.org/10.1007/978-3-642-58618-7_12

Gracia C, Gil L, Montero G, 2005. Evaluación del impacto climático sobre el sector forestal. In: Evaluación preliminar de los impactos en España por efecto del cambio climático; Moreno JM (ed.). pp: 399-435. Ministerio de Medio Ambiente. Madrid.

Gratani L, Varone L, 2006. Long-time variations in leaf mass and area of Mediterranean evergreen broad-leaf and narrow-leaf maquis species. Photosynthetica 44: 161-168. https://doi.org/10.1007/s11099-006-0001-1

Hinckley T, Lassoie J, Running S, 1978. Temporal and spatial variations in the water status of forest trees. For Sci, Monograph 20: 72 pp.

Huc R, Ducrey M, 1996. Ecophysiological response to thinning in a Quercus ilex L. coppice stand. Ann Ist Sper Selvic 27: 39-45.

IPCC, 2007. Fourth Assessment Report of the Intergovernmental Panel in Climate Change. Cambridge University Press.

Joffre R, Rambal S, Winkel T, 2001. Respuestas de las plantas mediterráneas a la limitación de agua: desde la hoja hasta el dosel. In: Aspectos funcionales de los ecosistemas mediterráneos; Zamora R, Pugnaire FI (eds). pp: 37-85. CSIC-AEET, Granada.

Keeley JE, 1988. Population variation in root grafting and a hypotesis. Oikos 52: 364-366. https://doi.org/10.2307/3565212

Larcher W, 1977. Ecofisiología vegetal. Ediciones Omega, S.A. Barcelona, Spain. 305 pp.

Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Rodriguez-Cortina R, 2009. Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Glob Chang Biol 15: 2163-2175. https://doi.org/10.1111/j.1365-2486.2009.01852.x

López BC, Sabate S, Gracia C, 1998. Fine roots dynamics in a Mediterranean forest: effects of drought and stem density. Tree Physiol 18: 601-606. https://doi.org/10.1093/treephys/18.8-9.601

López BC, Sabaté S, Gracia C, 2003. Thinning effects on carbon allocation to fine roots in a Quercus ilex forest. Tree Physiol 23: 1217-1224. https://doi.org/10.1093/treephys/23.17.1217

López BC, Gracia CA, Sabaté S, Keenan T, 2009. Assessing the resilience of Mediterranean holm oaks to disturbances using selective thinning. Acta Oecol 35: 849-854. https://doi.org/10.1016/j.actao.2009.09.001

Manion PD, 1991. Tree disease concepts. Prentice Hall. 402 pp.

Manzano MJ, Sánchez-Peña G, San Pedro S, Torres B, 2013. Vitalidad de Quercus ilex durante los últimos 26 años. Dinámica e identificación de áreas críticas desde el punto de vista sanitario. Proc 6º Congreso Forestal Español, Vitoria, June 10-14. 11 pp.

Martinez-Vilalta J, Piñol J, Beven K, 2002. A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean. Ecol Model 155: 127-147. https://doi.org/10.1016/S0304-3800(02)00025-X

Mitchell CP, Ford-Robertson JB, Hinckley T, Sennerby-Forss L, 1992. Ecophysiology of short rotation forest crops. Elsevier Sci Publ LTD, Oxford, England. 311 pp.

Montero G, Ortega C, Cañellas I, Bachiller A, 1999. Productividad aérea y dinámica de nutrientes en una repoblación de Pinus pinaster Ait. sometida a distintos regímenes de claras. Invest Agrar: Sist Recur For, Fuera de serie: 175-206.

Montero G, Ruiz-Peinado R, Muñoz M, 2005. Producción de biomasa y fijación de CO2 por los bosques españoles. Monogr INIA: Ser For 13. INIA, Ministerio de Educación y Ciencia, Madrid, España. 270 pp.

Niinemets U, 2001. Global-scale climatic controls of leaf dry mass per area, density and thickness in trees and shrubs. Ecology 82 (2): 453-469. https://doi.org/10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2

Ogaya R, Peñuelas J, 2007a. Leaf mass per area ratio in Quercus ilex leaves under a wide range of climatic conditions. The importance of low temperatures. Acta Oecol 31: 168-173. https://doi.org/10.1016/j.actao.2006.07.004

Ogaya R, Peñuelas J, 2007b. Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five year experimental field drought. Plant Ecol 189: 291-299. https://doi.org/10.1007/s11258-006-9184-6

Ojeda F, 2001. El fuego como factor clave en la evolución de plantas mediterráneas. Ecosistemas Mediterráneos. Análisis Funcional. Simposio de la Sociedad Española de Ecología Terrestre, Granada, February 11-13 (2000). pp: 319-349.

Pardos JA, 2001. Fisiología vegetal aplicada a especies forestales. Fundación Conde del Valle de Salazar, Madrid, Spain. 456 pp.

Pérez-Ramos IM, Rodríguez-Calcerrada J, Ourcival JM, Rambal S, 2013. Quercus ilex recruitment in a drier world : a multi-stage demographic approach. Perspec Plant Ecol Evol Syst 15 (2): 106-117. https://doi.org/10.1016/j.ppees.2012.12.005

Pinheiro J, Bates D, DebRoy S, Sakar D, 2016. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-128.

Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R, 2002. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Global Change Biol 8: 999-1017. https://doi.org/10.1046/j.1365-2486.2002.00530.x

Roda F, Retana J, Gracia CA, Bellot J (eds), 1999. Ecology of mediterranean evergreen oak forests. Springer, Barcelona. 373 pp. https://doi.org/10.1007/978-3-642-58618-7

Rodríguez-Calcerrada J, Pérez-Ramos IM, Ourcival JM, Limousin JM, Joffre R, Rambal S, 2011. Is selective thinning an adequate practice for adapting Quercus ilex coppices to climate change? Ann For Sci 68: 575-585. https://doi.org/10.1007/s13595-011-0050-x

Ruiz-Peinado R, del Rio M, Montero G, 2011. New models for estimating the carbon sink capacity of Spanish softwood species. Forest Syst 20 (1):176-188. https://doi.org/10.5424/fs/2011201-11643

Ruiz-Peinado R, Montero G, del Rio M, 2012. Biomass models to estimate carbon stocks for hardwood tree species. Forest Syst 21 (1): 42-52. https://doi.org/10.5424/fs/2112211-02193

Ruiz-Peinado R, Roig S, Serrada R, Bravo-Fernández JA, 2015. ¿Cuánto carbono retienen nuestros antiguos montes leñeros? Ecuaciones de biomasa para tallares de encina (Quercus ilex subsp. ballota L.) y quejigo (Q. faginea Lam.) en la zona centro de la Península Ibérica. Remedia Workshop. Madrid.

Rundel PW, 1980. Adaptations of Mediterranean-climate oaks to environmental stress. In: Ecology, management and utilization of California oaks. USDA For Serv Gen Tech Rep 44: 43-44.

Sabaté S, Gracia C, Sánchez A, 2002. Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For Ecol Manage 162: 23-37.

Salomón R, Rodríguez-Calcerrada J, Zafra E, Morales-Molino C, Rodríguez-García A, González-Doncel I, Oleksyn J, Zytkowiak R, López R, Miranda JC, et al., 2016. Unearthing the roots of degradation of Quercus pyrenaica coppices: A root-to-shoot imbalance caused by historical management? For Ecol Manage 363: 200-211.

San Miguel A, 1985. Variaciones producidas en un pastizal arbolado con rebollos (Quercus pyrenaica Willd.) por claras de distinta intensidad. An INIA: Ser For 9: 97-104.

San Miguel A, Montero G, Montoto JL, 1984. Estudios ecológicos y silvopascícolas en un quejigal (Quercus faginea Lamk.) de Guadalajara. Primeros resultados. An INIA: Ser For 8: 153-164.

Sánchez-Palomares O, López Senespleda E, Roig Gómez S, Vázquez de la Cueva A, Gandullo Gutiérrez JM, 2012. Las estaciones ecológicas actuales y potenciales de los encinares españoles peninsulares. Monog INIA: Ser For 23. Madrid. 317 pp.

Sánchez-Salguero R, Camarero JJ, Gutiérrez E, González Rouco F, Gazol A, Sangüesa-Barreda G, Andreu-Hayles L, Linares JC, Seftigen K, 2017. Assessing forest vulnerability to climate warming using a process-based model of tree growth: bad prospects for rear-edges. Glob Change Biol 23(7): 2705-2719. https://doi.org/10.1111/gcb.13541

Sanesi G, Lafortezza R, Colangelo G, Marziliano PA, Davies C, 2013. Root system investigation in sclerophyllous vegetation: An overview. Ital J Agron 8: 121-126. https://doi.org/10.4081/ija.2013.e17

Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K, 2000. Forests of the Mediterranean region : gaps in knowledge and research needs. For Ecol Manage 132: 97-109.

Serrada R, 2011. Apuntes de Selvicultura. Fundación Conde Valle de Salazar, ETSI Montes, EUIT Forestal, UPM, Madrid. 502 pp.

Serrada R, Allué M, San Miguel A, 1992. The coppice system in Spain. Current situation, state of art and major areas to be investigated. Ann Ist Sper Selvic 23: 266-275.

Serrada Hierro R, Aroca Fernández MJ, Roig Gómez S, Bravo Fernández JA, Gómez Sanz V, 2011. Impactos, vulnerabilidad y adaptación al cambio climático en el sector forestal. Notas sobre gestión adaptativa de las masas forestales ante el cambio climático. Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid. 126 pp.

Serrada Hierro R, Bravo-Fernández JA, Otero De Irizar J, Ruiz-Peinado Gertrudix R, Mutke Regneri S, Roig Gómez S, 2013. El bosque invisible bajo el monte bajo: una mirada al sistema radical de las cepas de encina. Proc 6º Congreso Forestal Español, Vitoria, June 10-14.

SSF-DGDRyPF, 2012. Red de Seguimiento a Gran Escala de Daños en los Montes (Red de Nivel I). Manual de Campo. Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid. 69 pp.

Terradas J, 1999. Holm oak and holm oak forests: an introduction. In: Ecology of Mediterranean evergreen oak forests; Rodà F, et al. (eds). pp: 3-14. Springer Germany. https://doi.org/10.1007/978-3-642-58618-7_1

Tognetti R, Longobucco A, Raschi A, 1998. Vulnerability of xylem to embolism in relation to plant hydraulic resistance in Quercus pubescens and Quercus ilex co-occurring in a Mediterranean coppice stand in central Italy. New Phytologist 139 (3): 437-447. https://doi.org/10.1046/j.1469-8137.1998.00207.x

Ugarte J, Vélaz de Medrano L, 1921. La encina y su explotación. Catecismos del agricultor y del ganadero. Calpe, Madrid. 32 pp.

Valladares F, Vilagrosa A, Peñuelas J, Ogaya R, Camarero JJ, Corcuera L, Sisó S, Gil-Pelegrín E, 2004. Estrés hídrico: ecofisiología y escalas de la sequía. In: Ecología del bosque mediterráneo en un mundo cambiante, Valladares F (ed). pp: 163-190. Ministerio de Medio Ambiente, EGRAF, Madrid.

Vericat P, Piqué M, Serrada R, 2012. Gestión adaptativa al cambio global en masas de Quercus mediterráneos. Centre Tecnològic Forestal de Catalunya, Solsona (Lleida). 172 pp.

Zuur A, Leno EN, Walker N, Saveliev AA, Smith GM, 2009. Mixed effects models and extensions in ecology with R. Springer-Verlag, NY. https://doi.org/10.1007/978-0-387-87458-6




DOI: 10.5424/fs/2017262-10583

Webpage: www.inia.es/Forestsystems