A review of thinning effects on Scots pine stands: From growth and yield to new challenges under global change

Miren del Río, Andrés Bravo-Oviedo, Hans Pretzsch, Magnus Löf, Ricardo Ruiz-Peinado


Aim of the study: Thinning experiments in Scots pine (Pinus sylvestris L.) stands have been carried out since long in different regions of its distribution. The aim of this paper is to gather the knowledge about the thinning effects on Scots pine stands, from the effects on growth and yield to the provision of ecosystem services in the framework of climate change.

Area of study: The review covered studies from different regions of the distribution area of Scots pine

Aim of the study: Thinning experiments in Scots pine (Pinus sylvestris L.) stands have been carried out for many years in different regions of its distribution. The aim of this paper is to gather knowledge regarding the effects of thinning on Scots pine stands, from the effects on growth and yield to the provision of ecosystem services in the context of climate change.

Area of study: The review covers studies from different regions of the distribution area of Scots pine

Material and methods: We reviewed the effect of thinning on four aspects: growth and yield, stability against snow and wind, response to drought, and ecosystem services.

Main results: Heavy thinning involves a loss in volume yield, although the magnitude depends on the region, site and stand age. Thinning generally does not affect dominant height while the positive effect on tree diameter depends on the thinning regime. The stability of the stand against snow and wind is lower after the first thinning and increases in the long term. The impact of extreme droughts on tree growth is lower in thinned stands, which is linked to a better capacity to recover after the drought. Thinning generally reduces the wood quality, litter mass, and stand structural diversity, while having neutral or positive effects on other ecosystem services, although these effects can vary depending on the thinning regime. However, scarce information is available for most of the ecosystem services.

Research highlight: Existing thinning experiments in Scots pine stands provided valuable information about thinning effects, but new experiments which cover a broad range of ecosystem services under different site conditions are still needed.


Pinus sylvestris; thinning schedule; growth; stand stability; drought impacts; ecosystem services

Full Text:



Abetz P, 1974. Zur Standraumregulierung in Mischbeständen und Auswahl von Zukunftsbäumen. AFZ 29 (41): 871-873.

Agestam E, Ekö PM, Johansson U, 1998. Timber quality and volume growth in naturally regenerated and planted Scots pine stands in S.W. Sweden. Technical Report, Uppsala. Studia Forestalia Suecica: 204.

Alonso-Ponce R, Roig S, Bravo A, del Río M, Montero G, Pardos M, 2016. Dynamics of ecosystem services in Pinus sylvestris stands under different managements and site quality classes. Eur J For Res, doi: 10.1007/s10342-016-1021-4. https://doi.org/10.1007/s10342-016-1021-4

Ammer C, 2017. Unraveling the importance of inter- and intraspecific competition for the adaptation of forests to climate change. In: Progress in Botany Vol. 78, pp: 345-367; Canovas FM, Lüttge U, Matyssek R (eds), Springer.

Ares A, Neill AR, Puettmann KJ, 2010. Understory abundance, species diversity and functional attribute response to thinning in coniferous stands. For Ecol Manage 260: 1104-1113.

Assmann E, 1970. The principles of forest yield study. Pergamon Press, Oxford, 506 pp.

Barbeito I, Montes F, Cañellas I, 2009. Evaluating the behaviour of vertical structure indices in Scots pine forests. Ann For Sci 66 (710): 1-10. https://doi.org/10.1051/forest/2009056

Bergh J, Nilsson U, Allen HL, Johansson U, Fahlvik N, 2014. Long-term responses of Scots pine and Norway spruce stands in Sweden to repeated fertilization and thinning. For Ecol Manage 320: 118-128.

Bigler C, Brake OU, Bugmann H, Dobbertin M, Rigling A, 2006. Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9: 330-343. https://doi.org/10.1007/s10021-005-0126-2

Blanco JA, Zavala MA, Imbert JB, Castillo FJ, 2005. Sustainability of forest management practices: Evaluation through a simulation model of nutrient cycling. For Ecol Manage 213: 209-228.

Blanco JA, Imbert JB, Castillo FJ, 2006. Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. For Ecol Manage 237: 342-352.

Blanco JA, Imbert JB, Castillo FJ, 2008. Nutrient return via litterfall in two contrasting Pinus sylvestris forests in the Pyrenees under different thinning intensities. For Ecol Manage 256: 1840-1852.

Blanco JA, Imbert JB, Castillo FJ, 2011. Thinning affects Pinus sylvestris needle decomposition rates and chemistry differently depending on site conditions. Biogeochemistry 106: 397-414. https://doi.org/10.1007/s10533-010-9518-2

Blumenrother M, Bachmann M, Muller-Starck G, 2001. Genetic characters and diameter growth of provenances of Scots pine (Pinus sylvestris L.). Silvae Genet 50: 212-221.

Bonet JA, Pukkala T, Fischer CR, Palahí M, Martínez de Aragón J, Colinas C, 2008. Empirical models for predicting the production of wild mushrooms in Scots pine (Pinus sylvestris L.) forests in the Central Pyrenees. Ann For Sci 65: 206. https://doi.org/10.1051/forest:2007089

Bonet JA, de-Miguel S, Martínez de Aragón J, Pukkala T, Palahí M, 2012. Immediate effect of thinning on the yield of Lactarious group deliciosus in Pinus pinaster forest in Northeastern Spain. For Ecol Manage 265: 211-217.

Bravo-Oviedo A, Ruiz-Peinado R, Modrego P, Alonso R, Montero G, 2015. Forest thinning impact on carbon stock and soil condition in Southern European populations of P. sylvestris L. For Ecol Manage 357: 259-267.

Bravo-Oviedo A, Ruiz-Peinado R, Onrubia R, del Río M, 2017. Thinning alters the early-decomposition rate and nutrient immobilization-release pattern of foliar litter in Mediterranean oak-pine mixed stands. For Ecol Manage 391: 309-320.

Bréda N, Granier A, Aussenac G, 1995. Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol 15: 295-306. https://doi.org/10.1093/treephys/15.5.295

Burkhart H, Tomé M, 2012. Modeling forest trees and stands. Springer, Berlin, 457 pp. https://doi.org/10.1007/978-90-481-3170-9

Burschel P, Huss J, 1997. Grundriß des Waldbaus. Parey Buchverlag, Berlin, 2nd ed. 352 pp.

Cameron AD, 2002. Importance of early selective thinning in the development of long-term stand stability and improved log quality: A review. Forestry 75: 25-35. https://doi.org/10.1093/forestry/75.1.25

Chroust L, 1979. Thinning experiment in a Scots pine forest stand after 20 years investigation. Comm Inst Fo Chec 11: 61-75.

Crecente-Campo F, Pommerening A, Rodriguez-Soalleiro R, 2009. Impacts of thinning on structure. Growth and risk of crown fire in a Pinus sylvestris L. plantation in northern Spain. For Ecol Manage 257: 1945-1954.

Cregg B, Zhang J, 2001. Physiology and morphology of Pinus sylvestris seedlings from diverse sources under cyclic drought stress. For Ecol Manage 154: 131-139.

Cremer KW, Carter PR, Minko G, 1983. Snow damage in Australian pine plantations. Aust For 46 (1): 53-66. https://doi.org/10.1080/00049158.1983.10674378

Curtis RO, Marshall DD, Bell JF, 1997. LOGS: A pioneering example of silvicultural research in coast Douglas-fir. J For 95: 19-25.

De Camino R, 1976. Zur Bestimmung der Bestandeshomogenität. Allgemeine Forst- und Jagdzeitung 147 (2/3): 54-58.

del Río M, Montero G, Ortega C, 1997. Respuesta de los distintos regímenes de claras a los daños causados por la nieve en masas de Pinus sylvestris L. en el Sistema Central. Invest Agrar: Sist Recur For 6: 103-117.

del Río M, Calama R, Cañellas I, Roig S, Montero G, 2008. Thinning intensity and growth response in SW-European Scots pine stands. Ann For Sci 65 (3): 308. https://doi.org/10.1051/forest:2008009

del Río M, Pretzsch H, Ruiz-Peinado R, Ampoorter E, Annighöfer P, Barbeito I, Bielak K, Brazaitis G, Coll L, Drössler L, et al, 2017. Species interactions increase the temporal stability of community productivity in Pinus sylvestris-Fagus sylvatica mixtures across Europe. J Ecol 105: 1032–1043. https://doi.org/10.1111/1365-2745.12727

de-Miguel S, Bonet JA, Pukkala T, Martínez de Aragón J, 2014. Impact of forest management intensity on landscape-level mushroom productivity: A regional model-based scenario analysis. For Ecol Manage 330: 218-227.

Dippel M, 1982. Auswertung eines Nelder-Pflanzverbandsversuches mit Kiefer im Forstamt Walsrode. Allgemeine Forst- und Jagdzeitung 153:137-154.

Dittmar O, 1991. Zur Z-Baum Entwicklung in langfristigen Kieferndurchforstungsflächen des nordostdeutschen Tieflandes. Allgemeine Forst- und Jagdzeitung 162 (7): 121-125.

Dobbertin M, 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. Eur J For Res 124 (4): 319-333. https://doi.org/10.1007/s10342-005-0085-3

Dobbertin M, Mayer P, Wohlgemuth T, Feldmeyer-Christe E, Graf U, Zimmermann NE, Rigling A, 2005. The decline of Pinus sylvestris L. forests in the swiss Rhone Valley: a result of drought stress? Phyton-Ann Rei Bot 45: 153-156.

Eriksson E, 2006. Thinning operations and their impact on biomass production in stands of Norway spruce and Scots pine. Biomass Bioenergy 30: 848-854. https://doi.org/10.1016/j.biombioe.2006.04.001

Erteld W, 1960. Untersuchung über Leistung und Entwicklung der Kiefer bei verschiedener Behandlung. Arch Forstw 9: 326-364.

Fahlvik N, Per-Magnus E, Pettersson N, 2005. Influence of precommercial thinning grade on branch diameter and crown ration in Pinus sylvestris in southern Sweden. Scan J For Res 20: 3. https://doi.org/10.1080/02827580510008266

Fernández de Uña L, Cañellas I, Gea-Izquierdo G, 2015. Stand competition determines how different tree species will cope with a warming climate. PLoS ONE 10 (3): e0122255. https://doi.org/10.1371/journal.pone.0122255

Fernández de Uña L, McDowell NG, Cañellas I, Gea-Izquierdo G, 2016. Disentangling the effect of competition, CO2 and climate on intrinsic water-use efficiency and tree growth. J Ecol 104: 678-690. https://doi.org/10.1111/1365-2745.12544

Ferris R, Pritchard EK, 2000. Risks associated with measures to enhance biodiversity in European Scots pine forests. Invest Agrar: Sist Recur For, Fuera de Serie nº 1: 255-272.

Franz F, 1983. Zur Behandlung und Wuchsleistung der Kiefer. Forstw Cbl 102 (1): 18-36. https://doi.org/10.1007/BF02741834

Galiano L, Martínez-Vilalta J, Lloret F, 2010. Drought-induced multifactor decline of scots pine in the Pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems 13: 978-991. https://doi.org/10.1007/s10021-010-9368-8

Gardiner B, Blennow K, Carnus JM, Fleischer M, Ingemarson F, Landmann G, Lindner M, Marzano M, Nicoll B, Orazio C, Peyron JL, Reviron MP, Schelhaas MJ, Schuck A, Spielmann M, Usbeck T, 2010. Destructive storms in European forests: past and forthcoming impacts. Final report to the European Commission—DG Environment. Eur Forest Inst, Joensuu, Findland, 138 pp.

Gardiner B, Shuck A, Schelhaas MJ, Orazio C, Blennow K, Nicoll B (Eds.), 2012. Living with storm damage to forests: What science can tell us. Eur Forest Inst Joensuu, Finland, 129 pp.

Gebhardt T, Häberle KH, Matyssek R, Schulz C, Ammer C, 2014. The more, the better? Water relations of Norway spruce stands after progressive thinning intensities. Agr Forest Meteorol 197: 235-243. https://doi.org/10.1016/j.agrformet.2014.05.013

Giuggiola A, Bugmann H, Zingg A, Dobbertin M, Rigling A, 2013. Reduction of stand density increases drought resistance in xeric Scots pine forests. For Ecol Manage 310: 827-835.

Giuggiola A, Ogée J, Rigling A, Gessler A, Bugmann H, Treydte K, 2016. Improvement of water and light availability after thinning at a xeric site: which matters more? A dual isotope approach. New Phytol 210: 108-121. https://doi.org/10.1111/nph.13748

Gizachew B, Brunner A, 2011. Density-growth relationships in thinned and unthinned Norway spruce and Scots pine stands in Norway. Scan J For Res 26: 543-534. https://doi.org/10.1080/02827581.2011.611477

Hale SE, Edwards C, Mason WL, Price M, Peace A, 2009. Relationships between canopy transmittance and stand parameters in Sitka spruce and Scots pine stands in Britain. Forestry 82: 503-513. https://doi.org/10.1093/forestry/cpp020

Hedwall PO, Brunet J, Nordin A, Bergh J, 2013. Changes in the abundance of keystone forest floor species in response to changes of forest structure. J Veg Sci 24: 296-306. https://doi.org/10.1111/j.1654-1103.2012.01457.x

Hedwall PO, Brunet J, 2016. Trait variations of ground flora species disentangle the effects of global change and altered land-use in Swedish forests during 20 years. Global Change Biology 22: 4038-4047. https://doi.org/10.1111/gcb.13329

Helmisaari HS, Hanssen KH, Jacobson S, Kukkola M, Luiro J, Saarsalmi A, Tamminen P, Tveite B, 2011. Logging residue removal after thinning in Nordic boreal forests: Long-term impact on tree growth. For Ecol Manage 261: 1919-1927.

Herrero C, Pando V, Bravo F, 2010. Modelling coarse woody debris in Pinus spp. plantations. A case study in Northern Spain. Ann For Sci 67: 708-716. https://doi.org/10.1051/forest/2010033

Holgen P, Mattsson L, Li CZ, 2000. Recreation values of boreal forest stand types and landscapes resulting from different silvicultural systems: An economic analysis. J Env Manage 60: 173-180. https://doi.org/10.1006/jema.2000.0377

Hunter ML, 1999. Maintaining biodiversity in forest ecosystems. Cambridge Univ Press, Cambridge. https://doi.org/10.1017/CBO9780511613029

Hynynen J, 1995. Predicting tree crown ratio for unthinned and thinned Scots pine stands. Can J For Res 25: 57-62. https://doi.org/10.1139/x95-007

Jankovska I, Straupe I, Brumelis G, Donis J, Kupfere L, 2014. Urban forests of Riga, Latvia-Pressures, naturalness, attitudes and management. Baltic Forestry 20: 342-351.

Jensen FS, Skovsgaard JP, 2009. Precommercial thinning of pedunculate oak: Recreational preferences of the population of Denmark for different thinning practices in young stands. Scand J For Res 24: 28-36. https://doi.org/10.1080/02827580802592475

Jonard M, Misson L, Ponette Q, 2006. Long-term thinning effects on the forest floor and the foliar nutrient status of Norway spruce stands in the Belgian Ardennes. Can J For Res 36: 2684-2695. https://doi.org/10.1139/x06-153

Keskitalo, E.C.H, Bergh, J, Felton J, Björkman C, Berlin M, Axelsson P, Ring E, Ågren Å, Roberge JM, Klapwijk MJ, Boberg J, 2016. Adaptation to climate change in Swedish forestry. Forests 7: 28. https://doi.org/10.3390/f7020028

Klang F, 2000. The influence of silvicultural practices on tree proporties in Norway spruce. Acta Universitatis Agriculturae Sueciae, Silvestria 128, 33 pp.

Kramer H, 1974. Der Einfluss verschiedener Durchforstungsarten auf Wachstum und Bestandesschäden. Untersuchungsergebnisse aus Fichtenbeständen in der Bundesrepublik Deutschland. In: Aspects of Thinning; Hamilton GJ (Ed). Forest Commis Bull 55: 82-94.

Kramer H, Jünemann D, 1984. Bestandesentwicklung und Erstdurchforstung bei einem Weitständig Begründeten Kiefernbestand. Forstarchiv 55: 10-17.

Kramer H, Röös M, 1989. Durchforstungsversuch in einem weitständig begründeten Kiefernbestand. Forst und Holz 44: 139-144.

Küsters E, Bachmann M, Pretzsch H, Utschig H, 2004. Die Kiefer im Rein- und Mischbestand - Produktivität, Variabilität, Wachstumstrend. Mitteilungen aus der Bayerischen Staatsforstverwaltung, 204 p.

Lado-Monserrat L, Lidón A, Bautista I, 2015. Litterfall, litter decomposition and associated nutrient fluxes in Pinus halepensis: influence of tree removal intensity in a Mediterranean forest. Eur J For Res 134: 833-844. https://doi.org/10.1007/s10342-015-0893-z

Lafond V, Cordonnier T, Courbaud B, 2015. Reconciling biodiversity conservation and timber production in mixed uneven-aged mountain forests: identification of ecological intensification pathways. Environ Manag 56: 1118-1133. https://doi.org/10.1007/s00267-015-0557-2

Lagergren F, Lankreijer H, Kucera J, Cienciala E, Mölder M, Lindroth A. 2008. Thinning effects on pine-spruce forest transpiration in central Sweden. For Ecol Manage 255: 2312-2323.

Langsaeter A, 1941. Om tynning i enaldret gran- og furuskog Maddel. Det Norske Skogforoksvesen 8: 131-216.

Lavelle P, Dugdale R, Scholes R, Berhe A, Carpenter E, Codispoti L, Izac AM, Lemoalle J, Luizao F, Scholes M, Treguer P, Ward B, 2005. Nutrient cycling. In: Ecosystems and human well-being: Current state and trends; Hassan R, Scholes R, Ash N. (eds), pp: 331-353. Island Press.

Lindhagen A, Hörnsten L, 2000. Forest recreation in 1977 and 1997 in Sweden: changes in public preferences and behaviour. Forestry 73: 143-153. https://doi.org/10.1093/forestry/73.2.143

Lindström A, Rune G, 1999. Root deformation in plantations of container-grown Scots pine trees: effects on root growth, tree stability and stem straightness. Plant Soil 217: 29-37. https://doi.org/10.1023/A:1004662127182

Low AJ, 1964. A study of compression wood in Scots pine (Pinus silvestris L.). Forestry 37: 179-201. https://doi.org/10.1093/forestry/37.2.179

Mäkinen H, Isomäki A, 2004a. Thinning intensity and growth of Scots pine stands in Finland. For Ecol Manage 201: 311-325.

Mäkinen H, Isomäki A, 2004b. Thinning intensity and long-term changes in increment and stem form of Scots pine trees. For Ecol Manage 203: 21-34.

Martín-Alcón A, González-Olabarria JR, Coll L, 2010. Wind and snow damage in the Pyrenees pine forests: Effect of stand attributes and location. Silva Fenn 44: 399-410. https://doi.org/10.14214/sf.138

Martínez-Peña F, de-Miguel S, Pukkala T, Bonet JA, Ortega-Martínez P, Aldea J, Martínez de Aragón J, 2012. Yield models for ectomycorrhizal mushrooms in Pinus sylvestris forests with special focus on Boletus edulis and Lactarius group deliciosus. For Ecol Manage 282: 63-69.

Martinez-Vilalta J, Pinol J, 2002. Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manage 161: 247-256.

Mason WL, Alía R, 2001. Current and future status of Scots pine (Pinus sylvestris L.) forests in Europe. Invest Agr: Sist Recur For, Fuera de Serie 1: 317-335.

Matías L, Jump AS, 2012. Interactions between growth, demography and biotic interactions in determining species range limits in a warming world: the case of Pinus sylvestris. For Ecol Manage 282: 10-22.

McElhinny C, Gibbons P, Brack C, Bauhus J, 2005. Forest and woodland stand structural complexity: Its definition and measurement. For Ecol Manage 218: 1-24.

Mehtätalo L, Peltola H, Kilpela A, Ikonen V, 2014. The response of basal area growth of scots pine to thinning: a longitudinal analysis of tree-specific series using a nonlinear mixed-effects model. Ann For Sci 60: 636-644. https://doi.org/10.5849/forsci.13-059

Mette T, Falk W, Uhl E, Biber P, Pretzsch H, 2015. Increment allocation along the stem axis of dominant and suppressed trees in reaction to drought - results from 123 stem analyses of Norway spruce, Scots pine and European beech. Austrian J For Sci 132: 185-254.

Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: synthesis report. Island Press, Washington DC.

Miina J, Hotanen JP, Salo K, 2009. Modelling the abundance and temporal variation in the production of bilberry (Vaccinium myrtillus L.) in Finnish mineral soil forests. Silva Fenn 43: 577-593. https://doi.org/10.14214/sf.181

Montero G, del Río M, Ortega C, 2000. Ensayo de claras en una masa natural de pino silvestre en el Sistema Central. Invest Agrar: Sist Recur For 1: 147-177.

Montero G, Cañellas I, Ortega C, del Río M, 2001a. Results from a thinning regime experiment in a Scots pine (Pinus sylvestris L.) natural regeneration stand in the Sistema Ibérico mountain range (Spain). For Ecol Manage 145: 151-161.

Montero G, Rojo A, Álvarez MF, del Río M, 2001b. Aspectos selvícolas y económicos de los pinares de Pinus sylvestris L. en el Sistema Central. Rev Esp Estud Agrosoc Pesqu 193: 27-56.

Montero G, del Río M, Roig S, Rojo A, 2008. Selvicultura de Pinus sylvestris L. In: Compendio de Selvicultura Aplicada en España; Serrada R, Montero G, Reque JA. (Eds.), pp: 503-534. INIA, Madrid.

Montes F, Cañellas I, 2006. Modelling coarse woody debris dynamics in even-aged Scots pine forests. For Ecol Manage 221: 220-232.

Moreno-Fernández D, Sánchez-González M, Álvarez-González JG, Hevia A, Majada JP, Cañellas I, Gea-Izquierdo G, 2014. Response to the interaction of thinning and pruning of pin especies in Mediterranean mountains. Eur J Forest Res 133: 833-843. https://doi.org/10.1007/s10342-014-0800-z

Mörling T, Valinger E, 1999. Effects offertilization and thinning on heartwood area, sapwood area and growth in Scots pine. Scan J For Res 14: 462-469. https://doi.org/10.1080/02827589950154168

Nave LE, Vance ED, Swanston CW, Curtis PS, 2010. Harvest impacts on soil carbon storage in temperate forests. For Ecol Manage 259: 857-866.

Nickel M, Klemmt HJ, Uhl E, Pretzsch H. 2007. Der Kiefern Standraum und Durchforstungsversuch Weiden 611. AFZ - Der Wald 24: 1316-1319.

Nilsson U, Agestam E, Ekö P-M, Elfving B, Fahlvik N, Johansson U, Karlsson K, Lundmark T, Wallentin C, 2010. Thinning of Scots pine and Norway spruce monocultures in Sweden - Effects of different thinning programmes on stand level gross- and net stem volume production. Studia Forestalia Suecia 219, 46 pp.

Øyen BH, Blom HH, Gjerde I, Myking T, Saetersdal M, Thunes KH, 2006. Ecology, history and silviculture of Scots pine (Pinus sylvestris L.) in western Norway - A literature review. Forestry 79: 319-329. https://doi.org/10.1093/forestry/cpl019

Peltola H, Miina J, Rouvinen I, Kellomaki S, 2002. Effect of early thinning on the diameter growth distribution along the stem of Scots pine. Silva Fenn 36: 813-825. https://doi.org/10.14214/sf.523

Peltola H, Kilpelainen A, Sauvala K, Raisanen T, Ikonen VP, 2007. Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine. Silva Fenn 41: 489. https://doi.org/10.14214/sf.285

Persson B, Persson A, Ståhl EG, Karlmats U, 1995. Wood quality of Pinus sylvestris progenies at various spacings. For Ecol Manage 76: 127-138.

Petty JA, Worrell R, 1981. Stability of coniferous tree stems in relation to damage by snow. Forestry 54: 115-128. https://doi.org/10.1093/forestry/54.2.115

Polley H, 1995. Beurteilung der mechanischen Stabilität der Waldbäume auf der Grundlage der Bundeswaldinventur. Forst und Holz 50 (19): 594-597.

Powers MD, Kolka R, Palik B, McDonald R, Jurgensen M, 2011. Long-term management impacts on carbon storage in Lake States forests For Ecol Manag 262: 424-431

Pretzsch H, 2005. Stand density and growth of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]). Evidence from long-term experimental plots. Eur J For Res 124: 193-205. https://doi.org/10.1007/s10342-005-0068-4

Pretzsch H, 2010. Forest dynamics, growth and yield. Springer Verlag, Berlin, 664 pp. https://doi.org/10.1007/978-3-540-88307-4

Pretzsch H, Rais A, 2016. Wood quality in complex forests versus even-aged monocultures: Review and perspectives. Wood Sci Technol 50: 845-880. https://doi.org/10.1007/s00226-016-0827-z

Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T, 2014. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nature communication 5967. https://doi.org/10.1038/ncomms5967

Pretzsch H, del Río M, Ammer C, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, et al. 2015. Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J For Res 134: 927-947. https://doi.org/10.1007/s10342-015-0900-4

Pretzsch H, del Río M, Schütze G, Ammer C, Annighöfer P, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, et al. 2016. Mixing of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) enhances structural heterogeneity, and the effect increases with water availability. For Ecol Manage 373: 149-166.

Primicia I, Artázcoz R, Imbert B, Puertas F, Traver MC, Castillo FJ, 2016. Influence of thinning intensity and canopy type on Scots pine stand and growth dynamics in a mixed managed forest. Forest Syst 25 (2): e057. https://doi.org/10.5424/fs/2016252-07317

Pukkala T, Miina J, Kellomäki S, 1998. Response to different thinning intensities in young Pinus sylvestris. Scan J For Res 13: 141-150. https://doi.org/10.1080/02827589809382970

Rehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin LI, 2002. Intraspecific responses to climate in Pinus sylvestris. Glob Chang Biol 8: 912-929. https://doi.org/10.1046/j.1365-2486.2002.00516.x

Reich PB, Oleksyn J, 2008. Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol Let 11: 588-597. https://doi.org/10.1111/j.1461-0248.2008.01172.x

Richter C, 2015. Biotically induced wood characteristics. In: Richter C, ed. Wood characteristics, pp: 125-174. Springer Int Publ. https://doi.org/10.1007/978-3-319-07422-1_6

Roig S, del Río M, Cañellas I, Montero G, 2005. Litter fall in Mediterranean Pinus pinaster Ait. stands under different thinning regimes. For Ecol Manage 206: 179-190.

Rouvinen S, Kuuluvainen T, Karjalainen L, 2002. Coarse woody debris in old Pinus sylvestris dominated forests along a geographic and human impact gradient in boreal Fennoscandia. Can J For Res 32: 2184-2200. https://doi.org/10.1139/x02-144

Rottmann M, 1985. Waldbauliche Konsequenzen aus Schneebruch-katastrophen. Schweiz Z Forstwes 136: 167-184.

Ruha T, Varmola M, 1997. Precommercial thinning in naturally regenerated Sctos pine stands in northern Filand. Silva Fennica 31: 401-405. https://doi.org/10.14214/sf.a8537

Ruiz-Peinado R, Bravo-Oviedo A, López-Senespleda E, Montero G, del Río M, 2013. Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods? Eur J For Res 132: 253-262. https://doi.org/10.1007/s10342-012-0672-z

Ruiz-Peinado R, Bravo-Oviedo A, Montero G, del Río M, 2016. Carbon stocks in a Scots pine afforestation under different thinning intensities management. Mitig Adapt Strateg Glob Chang 21: 1059-1072.

Ruiz-Peinado R, Bravo-Oviedo A, López-Senespleda

E, Bravo F, del Río M, 2017. Forest management and

carbon sequestration in the Mediterranean region:A

review. Forest Systems 26 (2) eR04S. https://doi.org/10.5424fs/2017262-11205

Salerni E, Perini C, 2004. Experimental study for increasing productivity of Boletus edulis S.L. in Italy. For Ecol Manage 201: 161-170.

Sánchez-Salguero R, Linares JC, Camarero JJ, Madrigal-González J, Hevia A, Sánchez-Miranda A, Ballesteros-Cánovas J, Alfaro-Sánchez R, García-Cervigón AI, Bigler C, Rigling A, 2015. Disentangling the effects of competition and climate on individual tree growth: A retrospective and dynamic approach in Scots pine. For Ecol Manage 358: 12-25.

Sangüesa-Barreda G, Linares JC, Camarero JJ, 2013. Drought and mistletoe reduce growth and water-use efficiency of Scots pine. For Ecol Manage 296: 64-73.

Schelhaas MJ, Nabuurs GJ, Schuck A, 2003. Natural disturbances in the European forests in the 19th and 20th centuries. Glob Chang Biol 9: 1620-1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x

Schmidt M, Hanewinkel M, Kändler G, Kublin E, Kohnle U, 2010. An inventory based approach for modelling single-tree storm damage - Experiences with the winter storm of 1999 in southwestern Germany. Can J For Res 40: 1636-1652. https://doi.org/10.1139/X10-099

Schnekenburger F, Brown KM, Barker JE, 1985. Effects of nitrogen fertilization and low thinning on snow damage in Jack Pine. For Sci 31: 552-556.

Sohn JA, Saha S, Bauhus J, 2016a. Potential of forest thinning to mitigate drought stress: A meta-analysis. For Ecol Manage 380: 261-273.

Sohn JA, Hartig F, Kohler M, Huss J, Bauhus J, 2016b. Heavy and frequent thinning promotes drought adaptation in Pinus sylvestris forests. Ecol Appl 26: 2190-2205. https://doi.org/10.1002/eap.1373

Spellmann H, Nagel J, 1992. Auswertung des Nelder-Pflanzverbandsversuches mit Kiefer im Forstamt Walsrode. Allgem Forst- und Jagdzeitung 163: 221-229.

Spittlehouse DL, Stewart RB, 2003. Adapting to climate change in forest management. BC J Ecosyst Manage 4: 7-17.

Taeger S, Zang C, Liesebach M, Schneck V, Menzel A, 2013. Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances. For Ecol Manage 307: 30-42.

Tamminen P, Saarsalmi A, Smolander A, Kukkola M, Helmisaari HS, 2012. Effects of logging residue harvest in thinnings on amounts of soil carbon and nutrients in Scots pine and Norway spruce stands. For Ecol Manage 263: 31-38.

Thibodeau L, Raymond P, Camiré C, Munson AD, 2000. Impact of precommercial thinning in balsam fir stands on soil nitrogen dynamics, microbial biomass, decomposition, and foliar nutrition. Can J For Res 30: 229-238. https://doi.org/10.1139/x99-202

Thomas SC, Halpern CB, Falk DA, Liguori DA, Austin KA, 1999. Plant diversity in managed forests: Understory responses to thinning and fertilization. Ecol Appl 9: 864-879. https://doi.org/10.1890/1051-0761(1999)009[0864:PDIMFU]2.0.CO;2

Tomé M, Faias SP (Eds), 2014. State of the art, review of silviculture, models and decision support tools for multipurpose trees (MPT) and non‐wood forest products (NWFP). Deliverable 2.1 of the StarTree project, FP7 Project no 311919 KBBE.2012.1.2-06. https://star-tree.eu/images/deliverables/WP2/Deliverable2_1.pdf

Torras O, Saura S, 2008. Effects of silvicultural treatments on forest biodiversity indicators in the Mediterranean. For Ecol Manage 255: 3322-3330.

Turtiainen M, Miina J, Salo K, Hotanen JP, 2013. Empirical prediction models for the coverage and yields of cowberry in Finland. Silva Fenn 47: 1005. https://doi.org/10.14214/sf.1005

Turtiainen M, Miina J, Salo K, Hotanen JP, 2016. Modelling the coverage and annual variation in bilberry yield in Finland. Silva Fenn 50: 1573. https://doi.org/10.14214/sf.1573

Utschig H, Neufanger M, Zanker T, 2011. Das 100-Baum-Konzept als Einstieg für Durchforstungsregeln in Mischbeständen. Allgemeine Forstzeitschrift für Waldwirtschaft und Umweltvorsorge AFZ-Der Wald AFZ 21: 4-6.

Valinger E, Lundquist L, 1992. The influence of thinning and nitrogen fertilisation on the frequency of snow and wind induced stand damage in forests. Scottish Forestry 46: 311-320.

Valinger E, Lundquist L, Brandel G, 1994. Wind and snow damage in a thinning and fertilisation experiment in Pinus sylvestris. Scand J For Res 9: 129-134. https://doi.org/10.1080/02827589409382822

Valinger E, Elfving B, Mörling T, 2000. Twelve-year growth response of Scots pine to thinning and nitrogen fertilization. For Ecol Manage 134: 45-53.

Valinger E, Kempe G, Fridman J, 2014. Forest management and forest state in shouthern Sweden before and after the impact of storm Gudrun in the winter of 2005. Scand J For Res 29: 466-472. https://doi.org/10.1080/02827581.2014.927528

Varmola M, Salminen H, Timonen M, 2004. Thinning response and growth trends of seeded Scots pine stands at the artic timberline. Silva Fenn 38: 71-83. https://doi.org/10.14214/sf.436

Vesala T, Suni T, Rannik U, Keronen P, Markkanen T, Sevanto S, Grönholm T, Smolander S, Kulmala M, Ilvesniemi H, et al., 2005. Effect of thinning on surface fluxes in a boreal forest. Glob Biogeochemical Cycles 19: 2001. https://doi.org/10.1029/2004GB002316

Walentowski H, Kölling C, Ewald J, 2007. Die Waldkiefer-bereit für den Klimawandel. LWF Wissen 57: 37-46.

Wang S, Fu B, 2013. Trade-offs between forest ecosystem services. For Policy Econ 26: 145-146.

Widenfalk O, Weslien J, 2009. Plant species richness in managed boreal forests—Effects of stand succession and thinning. For Ecol Manage 28: 1386-1394.

Wiedemann E, 1943. Kiefern-Ertragstafel für mäßige Durchforstung, starke Durchforstung und Lichtung, In: Wiedemann, E, 1948. Die Kiefer 1948. Verlag M & H Schaper, Hannover, 337 pp.

Wiedemann E, 1951. Ertragskundliche und waldbauliche Grundlagen der Forstwirtschaft. JD Sauerländer's Verlag, Frankfurt am Main.

Zeide B, 2001. Thinning and growth: a full turnaround. J For 99: 20-25.

Zubizarreta-Gerendiain A, Pellikka P, Garcia-Gonzalo J, Ikonen VP, Peltola H, 2012. Factors affecting wind and snow damage of individual trees in a small management unit in Finland: assessment based on inventoried damage and mechanistic modelling. Silva Fenn 46: 181-196. https://doi.org/10.14214/sf.441

DOI: 10.5424/fs/2017262-11325

Webpage: www.inia.es/Forestsystems