Short communication: Functional genetic diversity of chestnut (Castanea sativa Mill.) populations from southern Spain

María I. Cuestas, Claudia Mattioni, Luis M. Martín, Enrique Vargas-Osuna, Marcello Cherubini, María A. Martin

Abstract


Aim of the study: To evaluate the adaptive genetic variability of chestnut (Castanea sativa Mill.) populations from southern Spain in relation to bud burst and water stress.

Area of study: Andalusia (southern Spain) where many chestnut groves were progressively abandoned and have become ‘naturalized’.

Material and methods: A total of 126 chestnut trees from eight populations were assessed by means of nine genic microsatellite loci (expressed sequence tag simple sequence repeat markers) related to bud burst and water stress.

Main results: Significant differences in genetic diversity were detected within and among populations, not found with neutral microsatellite markers. The structure analysis indicated the presence of two different gene pools.

Research highlights: These results could contribute to the development of conservation strategies for this species in southern areas exposed to the effects of climate change. The genetic diversity of these populations could be useful in minimizing this risk and other predictable factors related to global change.

Keywords


functional markers; adaptation; population genetic structure

Full Text:

PDF HTML XML

References


Bodénès C, Chancere E, Gailing O, Vendramin GG, Bagnoli F, Durand J, Goicoechea PG, Soliani C, Villani F, Mattioni C, et al., 2012. Comparative mapping in the Fagaceae and beyond with EST-SSRs. BMC Plant Biol 12: 153. https://doi.org/10.1186/1471-2229-12-153

Coll M, Peñuelas J, Ninyerola M, Pons X, Carnicer J, 2013. Multivariable effect gradients driving forest demographic responses in the Iberian Peninsula. Forest Ecol Manag 303: 19-209. https://doi.org/10.1016/j.foreco.2013.04.010

Conedera M, Krebs P, Tinner W, Pradella M, Torriani D, 2004. The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veg Hist Archaeobot 13: 161-179. https://doi.org/10.1007/s00334-004-0038-7

Durand J, Bodénès C, Chancerel E, Frigerio JM, Vendramin G, Sebastiani F, Buonamici A, Galiling O, Koelewijn H, Villani F, et al., 2010. A fast and cost-effective approach to develop and map EST-SSR markers: Oak as a case study. BMC Genomics 11: 1. https://doi.org/10.1186/1471-2164-11-570

Evanno G, Regnaut S, Goudet J, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Excoffier L, Laval G, Schneider S, 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics 1: 47. https://doi.org/10.1177/117693430500100003

Fady B, Cottrell J, Ackzell L, Alía R, Muys B, Prada A, González-Martínez SC, 2016. Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century? Reg Environ Change 16: 927-939. https://doi.org/10.1007/s10113-015-0843-9

Falush D, Stephens M, Pritchard JK, 2007. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7: 574-578. https://doi.org/10.1111/j.1471-8286.2007.01758.x

Fineschi S, Malvolti ME, Morgante M, Vendramin GG, 1994. Allozyme variation within and among cultivated varieties of sweet chestnut (Castanea sativa). Can J Forest Res 24: 1160-1165. https://doi.org/10.1139/x94-153

Goudet J, 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (vers. 2.9.3). Lausanne University, Lausanne.

Homolka A, Schueler S, Burg K, Fluch S, Kremer A, 2013. Insights into drought adaptation of two European oak species revealed by nucleotide diversity of candidate genes. Tree Genet Genomes 9: 1179-1192. https://doi.org/10.1007/s11295-013-0627-7

Lind JF, Gailing O, 2013. Genetic structure of Quercus rubra L. and Quercus ellipsoidalis E. J. Hill populations at gene-based EST-SSR and nuclear SSR markers. Tree Genet Genomes 9: 707-722. https://doi.org/10.1007/s11295-012-0586-4

Martín MA, Moral A, Martín LM, Álvarez JB, 2007. The genetic resources of European sweet chestnut (Castanea sativa Miller) in Andalusia, Spain. Genet Resour Crop Ev 54: 379-387. https://doi.org/10.1007/s10722-005-5969-z

Martín MA, Mattioni C, Cherubini M, Taurchini D, Villani F, 2010. Genetic diversity in European chestnut populations by means of genomic and genic microsatellite markers. Tree Genet Genomes 6: 735-744. https://doi.org/10.1007/s11295-010-0287-9

Martín MA, Mattioni C, Molina JR, Álvarez JB, Cherubini M, Herrera MA, Villani F, Martín LM, 2012. Landscape genetic structure of chestnut (Castanea sativa Mill.) in Spain. Tree Genet Genomes 8: 127-136. https://doi.org/10.1007/s11295-011-0427-x

Mattioni C, Martín MA, Pollegioni P, Cherubini M, Villani F, 2013. Microsatellite markers reveal a strong geographical structure in European populations of Castanea sativa (Fagaceae): evidence for multiple glacial refugia. Am J Bot 100: 951-961. https://doi.org/10.3732/ajb.1200194

Pereira-Lorenzo S, Costa R, Ramos-Cabrera A, Ribeiro C, da Silva M, Manzano G, Barreneche T, 2010. Variation in grafted European chestnut and hybrids microsatellite reveals two main origins in the Iberian Peninsula. Tree Genet Genomes 5: 701-715. https://doi.org/10.1007/s11295-010-0285-y

Petit RJ, El Mousadik A, Pons O, 1998. Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12: 844-855. https://doi.org/10.1046/j.1523-1739.1998.96489.x

Powell W, Machray GC, Provan J, 1996. Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1: 215-222. https://doi.org/10.1016/S1360-1385(96)86898-0

Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.

Slatkin M, 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457-462.

Uchiyama K, Fujii S, Ishizuka W, Goto S, Tsumura Y, 2013. Development of 32 EST-SSR markers for Abies firma (Pinaceae) and their transferability to related species. Appl Plant Sci 1: 1200464. https://doi.org/10.3732/apps.1200464

Varshney RK, Graner A, Sorrells ME, 2005. Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23: 48-55. https://doi.org/10.1016/j.tibtech.2004.11.005

Weir BS, Cockerham CC, 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370.




DOI: 10.5424/fs/2017263-11547

Webpage: www.inia.es/Forestsystems