Estimating forest uniformity in Eucalyptus spp. and Pinus taeda L. stands using field measurements and structure from motion point clouds generated from unmanned aerial vehicle (UAV) data collection

Ângela M. K. Hentz, Carlos A. Silva, Ana P. Dalla Corte, Sylvio P. Netto, Michael P. Strager, Carine Klauberg


Aim of study: In this study we applied 3D point clouds generated by images obtained from an Unmanned Aerial Vehicle (UAV) to evaluate the uniformity of young forest stands.

Area of study: Two commercial forest stands were selected, with two plots each. The forest species studied were Eucalyptus spp. and Pinus taeda L. and the trees had an age of 1.5 years.

Material and methods: The individual trees were detected based on watershed segmentation and local maxima, using the spectral values stored in the point cloud. After the tree detection, the heights were calculated using two approaches, in the first one using the Digital Surface Model (DSM) and a Digital Terrain Model, and in the second using only the DSM. We used the UAV-derived heights to estimate an uniformity index.

Main results: The trees were detected with a maximum 6% of error. However, the height was underestimated in all cases, in an average of 1 and 0.7 m for Pinus and Eucalyptus stands. We proposed to use the models built herein to estimate tree height, but the regression models did not explain the variably within the data satisfactorily. Therefore, the uniformity index calculated using the direct UAV-height values presented results close to the field inventory, reaching better results when using the second height approach (error ranging 2.8-7.8%).

Research highlights: The uniformity index using the UAV-derived height from the proposed methods was close to the values obtained in field. We noted the potential for using UAV imagery in forest monitoring.


digital terrain model; forest inventory; photogrammetry; remote sensing; tree detection.

Full Text:



Andriotti JLS, 2003. Fundamentos de Estatística e Geoestatística. UNISINOS, São Leopoldo.

Baltsavias E, Gruen A, Eisenbeiss H, Zhang L, Waser LT, 2008. High‐quality image matching and automated generation of 3D tree models. Int J Remote Sens 29: 1243-1259.

Binkley D, Stape JL, Ryan MG, Barnard HR, Fownes J, 2002. Age-related decline in forest ecosystem growth: An individual-tree, stand-structure hypothesis. Ecosystems 5: 58-67.

Binkley D, Stape JL, Bauerle WL, Ryan MG, 2010. Explaining growth of individual trees: Light interception and efficiency of light use by Eucalyptus at four sites in Brazil. For Ecol Manage 259: 1704-1713.

Birdal AC, Avdan U, Türk T, 2017. Estimating tree heights with images from an unmanned aerial vehicle. Geomatics, Nat Hazards Risk 8: 1144-1156.

Bohlin J, Wallerman J, Fransson JES, 2012. Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scand J For Res 27: 692-699.

Borders BE, Will RE, Markewitz D, Clark A, Hendrick R, Teskey RO, Zhang Y, 2004. Effect of complete competition control and annual fertilization on stem growth and canopy relations for a chronosequence of loblolly pine plantations in the lower coastal plain of Georgia. For Ecol Manage 192: 21-37.

Carvajal-Ramírez F, Agüera-Vega F, Martínez-Carricondo PJ, 2016. Effects of image orientation and ground control points distribution on unmanned aerial vehicle photogrammetry projects on a road cut slope. J Appl Remote Sens 10: 34004.

Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J, 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci Model Dev 8: 1991-2007.

Cunliffe AM, Brazier RE, Anderson K, 2016. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens Environ 183: 129-143.

Dandois JP, Ellis EC, 2013. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sens Environ 136: 259-276.

Dandois JP, Olano M, Ellis EC, 2015. Optimal altitude, overlap, and weather conditions for computer vision uav estimates of forest structure. Remote Sens 7: 13895-13920.

Dempewolf J, Nagol J, Hein S, Thiel C, Zimmermann R, 2017. Measurement of within-season tree height growth in a mixed forest stand using UAV imagery. Forests 8: 1-15.

Díaz-Varela R, de la Rosa R, León L, Zarco-Tejada P, 2015. High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: Application in breeding trials. Remote Sens 7: 4213-4232.

Fisher RB, Breckon TP, Dawson-Howe K, Fitzgibbon A, Robertson C, Trucco E, Williams CKI, 2014. Dictionary of computer vision and image processing, 2nd Ed. Chichester.

Garzon-Lopez CX, Bohlman SA, Olff H, Jansen PA, 2013. Mapping tropical forest trees using high-resolution aerial photographs. Biotropica 45: 308-316.

Gašparović M, Seletković A, Berta A, Balenović I, 2017. The evaluation of photogrammetry-Based DSM from low-cost UAV by LiDAR-based DSM. South-East Eur For 8: 117-125.

Gebreslasie MT, Ahmed FB, van Aardt JAN, Blakeway F, 2011. Individual tree detection based on variable and fixed window size local maxima filtering applied to IKONOS imagery for even-aged Eucalyptus plantation forests. Int J Remote Sens 32: 4141-4154.

Gibbs HK, Brown S, Niles JO, Foley JA, 2007. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2: 45023.

Gobakken T, Bollandsås OM, Næsset E, 2015. Comparing biophysical forest characteristics estimated from photogrammetric matching of aerial images and airborne laser scanning data. Scand J For Res 30: 73-86.

Goodbody TRH, Coops NC, Marshall PL, Tompalski P, Crawford P, 2017. Unmanned aerial systems for precision forest inventory purposes: A review and case study. For Chron 93: 71-81.

Guerra-Hernández J, González-Ferreiro E, Sarmento A, Silva JJ, Nunes A, Correia AC, Fontes L, Tomé M, Díaz-Varela R, Guerra-Hernandez J, et al., 2016. Using high resolution UAV imagery to estimate tree variables in Pinus pinea plantation in Portugal. Forest Syst 25 (2): 1-5.

Guerra-Hernández J, González-Ferreiro E, Monleón VJ, Faias SP, Tomé M, Díaz-Varela RA, 2017. Use of multi-temporal UAV-derived imagery for estimating individual tree growth in Pinus pinea stands. Forests 8: 1-19.

Hakamada RE, 2012. Uso do inventário florestal como ferramenta de monitoramento da qualidade silvicultural em povoamentos clonais de Eucalyptus. Master dissertation. São Paulo University, Luiz de Queiroz College of Agriculture, Piracicaba.

Hakamada RE, Stape JL, de Lemos CCZ, Almeida AEA, Silva LF, 2015a. Uniformidade entre árvores durante uma rotação e sua relação com a produtividade em Eucalyptus clonais. Cerne 21: 465-472.

Hakamada RE, Stape JL, De Lemos CCZ, Almeida AEA, Silva LF, 2015b. Uso do inventário florestal e da uniformidade entre árvores como ferramenta de monitoramento da qualidade silvicultural em plantios clonais de eucalipto. Sci For Sci 43: 27-36.

Hernández-Clemente R, Navarro-Cerrillo RM, Romero Ramírez FJ, Hornero A, Zarco-Tejada PJ, 2014. A novel methodology to estimate single-tree biophysical parameters from 3D digital imagery compared to aerial laser scanner data. Remote Sens 6: 11627-11648.

Hirschmugl M, Ofner M, Raggam J, Schardt M, 2007. Single tree detection in very high resolution remote sensing data. Remote Sens Environ 110: 533-544.

Höfle B, Hollaus M, Hagenauer J, 2012. Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS J Photogramm Remote Sens 67: 134-147.

Holopainen M, Kalliovirta J, 2006. Modern data acquisition for forest inventories. In: Forest inventory: Methodology and applications; Kangas A & Maltamo M (eds.), pp: 343-362. Springer Netherlands, Dordrecht.

Hummel S, Hudak AT, Uebler EH, Falkowski MJ, Megown KA, 2011. A comparison of accuracy and cost of LiDAR versus stand exam data for landscape management on the Malheur National Forest. J For 109: 267-273.

Hung C, Bryson M, Sukkarieh S, 2012. Multi-class predictive template for tree crown detection. ISPRS J Photogr Remote Sens 68: 170-183.

IAPAR, 2012. Cartas climáticas do Estado do Paraná. Instituto Agroômico do Paraná.

IBÁ, 2016. Relatório Anual. Industria Brasileira de Árvores [Brazilian Tree Industry].

IBGE, 2015. Produção da extração vegetal e da silvicultura. Instituto Brasileiro de Geografia e Estatística.

ITCG, 2006. Mapa de declividade do Parana. Instituto de Terras Cartografia e Geociencias.

Järnstedt J, Pekkarinen A, Tuominen S, Ginzler C, Holopainen M, Viitala R, 2012. Forest variable estimation using a high-resolution digital surface model. ISPRS J Photogr Remote Sens 74: 78-84.

Jensen JLR, Mathews AJ, 2016. Assessment of image-based point cloud products to generate a bare earth surface and estimate canopy heights in a woodland ecosystem. Remote Sens 8 (1): 50.

Jiménez-Brenes FM, López-Granados F, Castro AI de, Torres-Sánchez J, Serrano N, Peña JM, 2017. Quantifying pruning impacts on olive tree architecture and annual canopy growth by using UAV-based 3D modelling. Plant Methods 13: 1-15.

Ke Y, Quackenbush LJ, 2011. A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int J Remote Sens 32: 4725-4747.

Ke Y, Quackenbush LJ, Im J, 2010. Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification. Remote Sens Environ 114: 1141-1154.

Klabin SA, 2016. Resumo Público - Plano de manejo Florestal 2016.

Köhl M, Magnussen S, Marchetti M, 2006. Sampling methods, remote sensing and GIS multiresource forest inventory. Springer-Verlag, NY, 387pp.

Korpela I, 2004. Individual tree measurements by means of digital aerial photogrammetry, Vol 3. Edition. The Finnish Society of Forest Science, 93 pp.

Koukoulas S, Blackburn GA, 2005. Mapping individual tree location, height and species in broadleaved deciduous forest using airborne LIDAR and multi‐spectral remotely sensed data. Int J Remote Sens 26: 431-455.

Laliberte AS, Herrick JE, Rango A, Winters C, 2010. Acquisition, orthorectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring. Photogr Eng Remote Sens 76: 661-672.

Lee JS, 1980. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans Pattern Anal Mach Intell.

Lee S, Wolberg G, Shin SY, 1997. Scattered data interpolation with multilevel b-splines. IEEE Trans Vis Comput Graph 3: 228-244.

Lisein J, Pierrot-Deseilligny M, Bonnet S, Lejeune P, 2013. A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests 4: 922-944.

Lisein J, Michez A, Claessens H, Lejeune P, 2015. Discrimination of deciduous tree species from time series of unmanned aerial system imagery. PLoS One 10: 1-20.

Luu TC, Binkley D, Stape JL, 2013. Neighborhood uniformity increases growth of individual Eucalyptus trees. For Ecol Manage 289: 90-97.

Martínez-Vilalta J, Vanderklein D, Mencuccini M, 2007. Tree height and age-related decline in growth in Scots pine (Pinus sylvestris L.). Oecologia 150: 529-544.

Mathews AJ, Jensen JLR, 2013. Visualizing and quantifying vineyard canopy LAI using an unmanned aerial vehicle (UAV) collected high density structure from motion point cloud. Remote Sens 5: 2164-2183.

McRoberts RE, Tomppo EO, 2007. Remote sensing support for national forest inventories. Remote Sens Environ 110: 412-419.

Mesas-Carrascosa FJ, García MDN, De Larriva JEM, García-Ferrer A, 2016. An analysis of the influence of flight parameters in the generation of unmanned aerial vehicle (UAV) orthomosaicks to survey archaeological areas. Sensors 16 (11): 1838.

Mesas-Carrascosa FJ, Torres-Sánchez J, Clavero-Rumbao I, García-Ferrer A, Peña JM, Borra-Serrano I, López-Granados F, 2015. Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by uav to support site-specific crop management. Remote Sens 7: 12793-12814.

Naesset E, 2002. Determination of mean tree height of forest stands by digital photogrammetry. Scand J For Res 17 (5): 37-41.

Näsi R, Honkavaara E, Lyytikäinen-Saarenmaa P, Blomqvist M, Litkey P, Hakala T, Viljanen N, Kantola T, Tanhuanpää T, Holopainen M, 2015. Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level. Remote Sens 7: 15467-15493.

Nex F, Remondino F, 2014. UAV for 3D mapping applications: A review. Appl Geomatics 6: 1-15.

Oliveira LT de, Carvalho LMT de, Ferreira MZ, Oliveira TC de A, Junior FWA, 2012. Application of LIDAR to forest inventory for tree count in stands of Eucalyptus sp. Cerne 18: 175-184.

Otto MSG, Hubbard RM, Binkley D, Stape JL, 2014. Dominant clonal Eucalyptus grandis x urophylla trees use water more efficiently. For Ecol Manage 328: 117-121.

Panagiotidis D, Abdollahnejad A, Surový P, Chiteculo V, 2016. Determining tree height and crown diameter from high-resolution UAV imagery. Int J Remote Sens 38: 2392-2410.

Puliti S, Olerka H, Gobakken T, Næsset E, 2015. Inventory of small forest areas using an unmanned aerial system. Remote Sens 7: 9632-9654.

Puttonen E, Litkey P, Hyyppä J, 2010. Individual tree species classification by illuminated-Shaded area separation. Remote Sens 2: 19-35.

Quan L, 2010. Image based modeling. Springer, NY, 257 pp.

R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Raczynski RJ, 2017. Accuracy analysis of products obtained from UAV-borne photogrammetry influenced by various flight parameters. Master thesis. Norwegian University of Science and Technology, Trondheim.

Salamí E, Barrado C, Pastor E, 2014. UAV flight experiments applied to the remote sensing of vegetated areas. Remote Sens 6: 11051-11081.

Santos JC, 2005. Plano Diretor de Desenvolvimento de Telêmaco Borba. Telêmaco Borba.

Schreuder HT, Gregoire TG, Wood GB, 1993. Sampling methods for multiresource forest inventory. John Wiley & Sons, NY, 446 pp.

Scott CT, Gove JH, Scott CT, Gove JH, 2002. Forest inventory. In: Encyclopedia of environmetrics. pp: 814-820. John Wiley & Sons, Ltd, Chichester, UK.

St-Onge B, Jumelet J, Cobello M, Véga C, 2004. Measuring individual tree height using a combination of stereophotogrammetry and lidar. Can J For Res 34: 2122-2130.

St-Onge B, Audet FA, Bégin J, 2015. Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds. Forests 6: 3899-3922.

Stape JL, Rocha JC, Donatti Z, 2006. Indicadores de qualidade silvicultural na Aracruz: 2000 a 2005. Piracicaba.

Stape JL, Binkley D, Ryan MG, Fonseca S, Loos RA, Takahashi EN, Silva CR, Silva SR, Hakamada RE, Ferreira JM de A, et al., 2010. The Brazil eucalyptus potential productivity project: Influence of water, nutrients and stand uniformity on wood production. For Ecol Manage 259: 1684-1694.

Szeliski R, 2011. Computer vision: Algorithms and applications. Springer, 824 pp.

Tanhuanpää T, Saarinen N, Kankare V, Nurminen K, Vastaranta M, Honkavaara E, Karjalainen M, Yu X, Holopainen M, Hyyppa J, et al., 2016. Evaluating the performance of high-altitude aerial image-based digital surface models in detecting individual tree crowns in mature boreal forests. Forests 7 (7): 143.

Tomaštík J, Mokroš M, Saloš S, Chudỳ F, Tunák D, 2017. Accuracy of photogrammetric UAV-based point clouds under conditions of partially-open forest canopy. Forests 8 (5): 151.

Ullman S, 1979. The interpretation of structure from motion. Proc R Soc London 203: 405-426.

Verhoeven G, 2011. Taking computer vision aloft - Archaeological three-dimensional reconstructions from aerial photographs with photoscan. Archaeol Prospect 62: 61-62.

Vosselman G, 2000. Slope based filtering of laser altimetry data. Int Archiv Photogr Remote Sens 33 (B3/2): 678-684.

Wallace L, Lucieer A, Watson C, Turner D, 2012. Development of a UAV-LiDAR system with application to forest inventory. Remote Sens 4: 1519-1543.

Wallace L, Lucieer A, Malenovsky Z, Turner D, Vopenka P, 2016. Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests 7: 1-16.

Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM, 2012. "Structure-from-Motion" photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 179: 300-314.

White JC, Wulder MA, Vastaranta M, Coops NC, Pitt D, Woods M, 2013. The utility of image-based point clouds for forest inventory: A comparison with airborne laser scanning. Forests 4: 518-536.

Whitehead K, Hugenholtz CH, 2014. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges. J Unmanned Veh Syst 2: 86-102.

Wichmann V, Conrad O, Jochem A, 2013. LiDAR point cloud processing with SAGA GIS. Hamburg Beiträge zur Phys Geogr und Landschaftsökologie 20: 81-90.

Zahawi RA, Dandois JP, Holl KD, Nadwodny D, Reid JL, Ellis EC, 2015. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biol Conserv 186: 287-295.

Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P, 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur J Agron 55: 89-99.

Zhou J, Proisy C, Descombes X, le Maire G, Nouvellon Y, Stape JL, Viennois G, Zerubia J, Couteron P, 2013. Mapping local density of young Eucalyptus plantations by individual tree detection in high spatial resolution satellite images. For Ecol Manage 301: 129-141.

Zucon ARS, Hawkes B, Lemos CCZ de, 2015. Use of unmanned aerial vehicle images as a tool to evaluate stand uniformity in clonal Eucalyptus plantations. Anais do XVII Simpósio Bras Sensoriamento Remoto - SBSR, João Pessoa INPE 6381-6388.

DOI: 10.5424/fs/2018272-11713