Resource communication: ApkFor©, an Android Open-Source Project for research and technology transfer in forest management

Fernando Pérez-Rodríguez, João C. Azevedo, María Menéndez-Miguélez


Aim of the study: To introduce and describe ApkFor©, an Android Open-Source Project to generate basic mobile applications to transfer forest growth and yield models for even-aged stands.

Material and methods: ApkFor© was developed in Android Studio using Java and XML languages integrating  transition functions for dominant height and basal area, equations of tree and stand volume and structural models. The project was applied and validated for Pinus pinaster Ait. stands in Northeastern Portugal.

Main results: ApkFor© is an Open-Source project freely available from the Source Force repository:, licensed under the GNU General Public License version 3.0 (GPLv3).

Research highlights: This project has been designed and created to provide the code and promote its re-use and modification to develop simple growth and yield mobile applications in Android, and with it to transfer research results of forest modelling to forest managers. Moreover, an example of application of the compiled code is provided using the models of Pinus pinaster Ait. previously validated for the Northeastern Region of Portugal.


Java; growth and yield; dynamic models; Pinus pinaster Ait.; Northeastern Portugal

Full Text:



Barrio-Anta M, Balboa-Murias MA, Castedo-Dorado F, Diéguez-Aranda U, Álvarez-González JG, 2006. An ecoregional model for estimating volume, biomass and carbon pools in maritime pine stands in Galicia (northwestern Spain). Forest Ecol Manage 124: 24-34.

Blanco-Alambiaga J, 2015. Desarrollo de una aplicación móvil para la detección y clasificación de hojas de árboles. [27 March 2017].

Borges JG, Nordstrom EM, García-Gonzalo J, Hujala T, Trasobares A, 2014. Computer-based tools for supporting forest management. The experience and the expertise world-wide. Report of Cost Action FP 0804 Forest Management Decision Support Systems (FORSYS). Swedish Univ. of Agricultural Sciences. 503 pp.

Burkhart HE, Tomé M, 2012. Modeling forest trees and stands. Springer Science & Business Media.

Castedo-Dorado F, Diéguez-Aranda U, Álvarez-González JG, 2007. A growth model for Pinus radiata D. Don stands in north-western Spain. Ann Forest Sci 64: 453-465.

Crecente-Campo F, 2008. Modelo de crecimiento de árbol individual para Pinus radiata D. Don en Galicia. Tesis Doctoral. Universidad de Santiago de Compostela. Lugo.

De Sousa K, Detlefsen G, Rivera O, de Melo E, Tobar D, Castaño-Quintero ME, Aristizabal-Correa S, Amores-Contreras F, Castro de Sousa S, Casanoves F, 2015. Using a smartphone app to support participatory agroforestry planning in Central America. Annals of World Forestry Congress (XIV). Durban, South Africa. 9 pp.

Diéguez-Aranda U, Granda-Arias JA, Álvarez-Gonzáles JG, Gadow KV, 2006. Site quality curves for birch stands in North-Western Spain. Silva Fennica 40 (4): 631-644.

Forest Inventory App, 2017. [27 March 2017].

Forest Metrics, 2017. [27 March 2017].

Larocque GR, Bhatti J, Arsenault A, 2015. Integrated modelling software platform development for effective use of ecosystem models. Ecol Modell 306: 318-325.

Liu W, Wang S, Zhou Y, Wang L, 2014. An android intelligent mobile terminal application: Field data survey system for forest fires. Natural Hazards 73 (3): 1483-1497.

Menéndez-Miguélez M, Canga E, Álvarez-Álvarez P, Majada J, 2014. Stem taper function for sweet chestnut (Castanea sativa Mill.) coppice stands in northwest Spain. Ann Forest Sci 71 (7): 761-770.

Menéndez-Miguélez M, Álvarez-Álvarez P, Majada J, Canga E, 2016. Management tools for Castanea sativa coppice stands in northwestern Spain. Bosque 37 (1): 119-133.

Molinier M, López-Sánchez CA, Toivanen T, Korpela I, Corral-Rivas JJ, Tergujeff R, Häme T, 2016. Relasphone—Mobile and participative in situ forest biomass measurements supporting satellite image mapping. Remote Sens 8 (10): 869.

Nagappan M, Shihab E, 2016. Future trends in software engineering research for mobile apps. In: Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd Int Conf, Vol. 5, pp: 21-32.

Pérez-Rodríguez F, Nunes L, Sil Â, Azevedo J, 2016. FlorNExT®, a cloud computing application to estimate growth and yield of maritime pine (Pinus pinaster Ait.) stands in Northeastern Portugal. Forest Syst 25 (2): eRC08.

Segarra ÀC, 2017. Aplicación Android para clasificar setas presentes en España mediante procesamiento de imagen. Doctoral thesis. Universidad Politécnica, Valencia.

DOI: 10.5424/fs/2017263-12047