Gmelina arborea “death disease” in fast-growth plantations: Effects of soil and climatic conditions on severity and incidence and its implications for wood quality

Marcela Arguedas, María Rodriguez-Solis, Roger Moya, Alexander Berrocal

Abstract


Aim of study: Plantations are threatened by an emerging disease called “Gmelina death disease”. The objective of this study was measured the incidence and severity of this disease and were correlated with the characteristics of the plantations, micro- and macronutrients in the soil and climatic parameters.

Area of study: The present study evaluated 16 symptomatic fast-growth plantations of different age in Costa Rica

Material and methods: Fungi were identified from xylem of infected trees. Incidence and severity was measured and correlated with the characteristics of the plantations, micro- and macronutrients in the soil and climatic parameters. Root condition and the quality (specify gravity, mechanical and decay resistance and chemical compositions), of the wood of symptomatic and asymptomatic trees were compared.

Main results: Three fungal species (Chaetomella raphigera, Fusarium solani and Rhizomucor variabilis) were identified from diseased samples. Clay content in the soil profile from 10-20 cm deep explained a significant proportion of the variation in the incidence and severity of the disease, and stand density was related to severity. Although two climatic variables, Holdridge’s potential annual evapotranspiration and Thornthwaite’s potential evapotranspiration, showed a relationship between the incidence in the trees and symptoms of the disease. Infected wood turned black in symptomatic trees. Specify gravity and mechanical resistance of infected wood decreased, whereas its natural durability was unaffected. Changes were observed in the quantities of Mg, Fe, Ca, K and Zn in infected wood.

Research highlights: Gmelina plantations established in sites with high stand densities and high contents of clay increase susceptibility to this disease.


Keywords


death syndrome; soil management; tropical species; pathogen

Full Text:

PDF HTML XML

References


Araúz F, 1998. Fitopatología: un análisis agroecológico. San José, Costa Rica, EUCR. 469 p.

Arguedas M, 2004. Problemas fitosanitarios de la melina (Gmelina arborea (Roxb)) en Costa Rica. Kurú Rev For 1 (2): 1-7.

Arguedas M, Quirós L, 1997. Experiencias y perspectivas del manejo de plagas forestales en Costa Rica. Manejo Integrado de Plagas 45: 34-42.

ASTM, 2003a. Standard test methods for small clear specimens of timber. Annual Book of American Society for Testing and Materials Standards, Vol 04.10, Philadelphia, USA. (ASTM D 143-94, Reapproved 2000), 25 pp.

ASTM, 2003b. Standard test methods for direct moisture content measurement of wood and wood-base materials. Annual Book of American Society for Testing and Materials Standards, Vol 04.10, Philadelphia, USA (ASTM D 4442-92), 8 pp.

ASTM, 2003c. Standard method of accelerated laboratory test of natural decay resistance of woods. Annual Book of American Society for Testing and Materials Standards, Vol. 04.10, Philadelphia, USA (ASTM D 2017-81, Reapproved 1994), 15 pp.

Barrantes A, Ugalde S, 2017. Usos y aportes de la madera. Estadísticas 2016. Oficina Nacional Forestal, San José, Costa Rica. 40 p.

Barros JA, Medeiros EV, Notaro KA, Moraes WS, Silva JEM, Nascimento TC, Moreira KA, 2014. Different cover promote sandy soil suppressiveness to root rot disease of cassava caused by Fusarium solani. Afr J Microbiol Res 8 (10): 967-973. https://doi.org/10.5897/AJMR2014.6607

Basak AC, Basak SR, 2011. Biological control of Fusarium solani sp. dalbergiae, the wilt pathogen of Dalbergia sissoo, by Trichoderma viride and T. harzianum. J Trop For Sci 23 (4): 460-466.

Belete E, Ayalew A, Ahmed S, 2013. Associations of biophysical factors with faba bean root rot (Fusarium solani) epidemics in the northeastern highlands of Ethiopia. Crop Prot 52: 39-46. https://doi.org/10.1016/j.cropro.2013.05.003

Chavarría-Vega M, Carmona-Solís R, 2016. Efecto de microorganismos antagonistas en el control de la enfermedad denominada "Nectria" en la melina Gmelina arborea Roxb. Rev For Mesoam Kurú 13 (32): 21-29. https://doi.org/10.18845/rfmk.v0i0.2549

Coleman JJ, 2016. The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol Plant Path 17 (2): 146-158. https://doi.org/10.1111/mpp.12289

Duke JA, 1987. Gmelina arborea Roxb. Purdue University, Centre for New Crops and Plant Products. West Lafayette, IN, USA. 25 p.

Dvorak WS, 2004. World view of Gmelina arborea: opportunities and challenges. New Forest 28: 111-126. https://doi.org/10.1023/B:NEFO.0000040940.32574.22

Gajbhiye M, Sathe S, Shinde V, Kapadnis B, 2016. Morphological and molecular characterization of pomegranate fruit rot pathogen, Chaetomella raphigera, and its virulence factors. Ind J Microbiol 56 (1): 99-102. https://doi.org/10.1007/s12088-015-0554-4

García-Díaz SE, Cibrián-Tovar D, Pérez-Vera OA, 2011. Haematonectria haematococca (Berk. & Broome) Samuels & Nirenberg y su anamorfo (Fusarium solani (Mart.) Sacc.) asociado a muerte descendente de teca y melina. XVI Simposio Nacional de Parasitología Forestal, Cuernavaca, Morelos, 26-28 Oct 2011, Mexico. pp: 184-186.

Harrington TC, Thorpe DJ, Alfenas AC, 2011. Genetic variation and variation in aggressiveness to native and exotic hosts among Brazilian populations of Ceratocystis fimbriata. Phytopathology 101 (5): 555-566. https://doi.org/10.1094/PHYTO-08-10-0228

Holdridge L, 1967. Life zone ecology. Tropical Science Center. San Jose, Costa Rica. 206 p.

Jeremic D, Cooper P, Srinivasan U, 2004. Comparative analysis of balsam fir wetwood, heartwood, and sapwood properties. Can J For Res 34: 1241-1250. https://doi.org/10.1139/x03-287

Julian E. 1982. Plantation forestry in the tropics. Oxford Univ Press, NY. 50 p.

Leslie JF, Summerell BA, 2006. The Fusarium Laboratory Manual. Black-Well Publ, p. 388. https://doi.org/10.1002/9780470278376

Maringoni AC, Furtado EL, 1997. Pathogenicity of Agrobacterium tumefaciens on Gmelina. Summa Phytopatol 23: 248-251.

Moya R, Tomazello M, 2008. Variation in the wood anatomical structure of Gmelina arborea (Verbenaceae) trees at different ecological conditions in Costa Rica. Rev Biol Trop 56 (2): 689-704.

Moya R, Muñoz F, Dragica J, Berrocal A, 2009. Visual identification, physical properties, ash composition and water diffusion of wetwood in Gmelina arborea. Can J For Res 39 (3): 537-545. https://doi.org/10.1139/X08-193

Moya R, Soto R, Jiménez P, Tenorio C, 2012. Relationship between wood colour parameters measured by the CIELab system and extractive and phenol content in Acacia mangium and Vochysia guatemalensis from fast-growth plantations. Molecules 17 (4): 3639-3652. https://doi.org/10.3390/molecules17043639

Muchovej JJ, Albuquerque FC, Ribeiro GT, 1978. Gmelina arborea - A new host of Ceratocystis fimbriata. Plant Dis Rep 62 (8): 717-719.

Murdoch RJ, Campana J, Biermann CJ, 1987. Physical and chemical properties of wetwood in American elm (Ulmus americana). Can J Pl Path 9: 20-23. https://doi.org/10.1080/07060668709501906

Murillo O, Badilla Y, Rojas F, Mata X, 2014. Uso de biocontroladores y materiales tolerantes a los patógenos asociados al síndrome de la muerte descendente de la teca (Tectona grandis) y cancro Nectria de la melina (Gmelina arborea). Informe Final de proyecto de Investigación. Instituto Tecnológico de Costa Rica, Cartago, Costa Rica, 51 p.

Nalim FA, Samuels GJ, Wijesundera RL, Geiser DM, 2011. New species from the Fusarium solani species complex derived from perithecia and soil in the Old World tropics. Mycologia 103 (6): 1302-1330. https://doi.org/10.3852/10-307

O'Donnell K, 2000. Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92 (5): 919-938. https://doi.org/10.2307/3761588

O'Donnell K, Sutton DA, Fothergill A, McCarthy D, Rinaldi MG, Brandt ME, Zhang N, Geiser DM, 2008. Molecular phylogenetic diversity; multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. J Clin Microbiol 46: 2477-2490. https://doi.org/10.1128/JCM.02371-07

Ribeiro GT, 1982. Avaliação preliminar da resistência de árvores de Gmelina arborea Lineaus, mediante inoculações do fungo Ceratocystis fimbriata El. & Halst., causador do cancro em gmelina. Fitopatol Bras 7: 517-524.

Román-Avilés B, Snapp SS, Kelly JD, 2004. Assessing root traits associated with root rot resistance in common bean. Field Crops Res 86 (2): 147-156. https://doi.org/10.1016/j.fcr.2003.08.001

Salas A, 2015. Determinación de la incidencia y severidad de la pudrición del tronco de genotipos de melina (Gmelina arborea Roxb.) en el Pacífico Sur de Costa Rica. Univ Nac de Costa Rica, Fac Cienc Tierra y Mar, Esc Ciencias Ambientales. Tesis de Licenciatura en Ciencias Forestales. Heredia, Costa Rica. 50 p.

Samuels GJ, Lu BS, Chaverri P, Candoussau F, Fournier J, Rossman AY, 2009. Cyanonectria, a new genus for Nectria cyanostoma and its Fusarium anamorph. Mycol Prog 8: 49-58. https://doi.org/10.1007/s11557-008-0577-x

Samuels J, Nirenberg H, 1989. Nectria and Fusarium. 1. Nectria setofusariae and its anamorph Fusarium setosum. Can J Bot 67 (11): 3372-3377. https://doi.org/10.1139/b89-409

Seo DJ, Lee HB, Kim IS, Kim KY, Park RD, Jung WJ, 2013. Antifungal activity of gallic acid purified from Terminalia nigrovenulosa bark against Fusarium solani. Microb Path 56: 8-15. https://doi.org/10.1016/j.micpath.2013.01.001

Singh Y, Verma RK, Jamaluddin J, 2003. Combination of bio-control agents, organic matter and biofertilizer to suppress Fusarium wilt and improve growth of Gmelina arborea seedlings. Ind J Trop Biodiv 11: 74-84.

Soni KK, Asaiya AJK, Nandeshwar DL, Jamaluddin J, 2005. Fusarium wilt of Buchnania lanzan Spreng - A new disease record from India. Ind J Trop Biodiv 13: 111-112.

Sparks D, 1996. Methods of soil analysis. Part 3, Chemical methods. Soil Sci Soc Am, Inc., Madison, WI, USA.

Tenorio C, Moya R, Arias-Aguilar D, Briceño-Elizondo E, 2016. Biomass yield and energy potential of short-rotation energy plantations of Gmelina arborea one year old in Costa Rica. Ind Crop Prod 83: 63-73. https://doi.org/10.1016/j.indcrop.2015.12.005

Thornthwaite CW, Mather JR, 1957. Instructions and tables for computing potential evapotranspiration and the water balance. Drexel Inst Techn Climat 10 (3): 185-311.

Vallejos J, Moya R, Serrano R, 2015. Effects of thinning on diameter, heartwood, density and drying defects of Gmelina arborea. Maderas. Cienc Tecnol 17 (2): 365-372. https://doi.org/10.4067/S0718-221X2015005000034

Umana EJ, Akwaji PI, Markson AA, Udo SE, 2015. Gmelina arborea Roxb: associated mycoflora and diseases in Cross River State, Nigeria. Global J Sci Front Res: C Biol Sci 15 (4): 1-15.

Voigt K, Cigelnik E, O׳donnell K, 1999. Phylogeny and PCR identification of clinically important Zygomycetes based on nuclear ribosomal-DNA sequence data. J Clin Microbiol 37: 3957-3964.

White TJ, Bruns T, Lee WT, Taylor JW, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: A guide to methods and applications; Innis MA et al. (eds). pp: 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Xu Z, Leininger TD, Lee AWC, Tainter FH, 2001. Chemical properties associated with bacterial wetwood in red oaks. Wood Fiber Sci 33: 76-83.

Ward JC, Pong WY, 1980. Wetwood in trees: a timber resource problem. United USDA, Pacific NW For Range Exp, General Tech. Rep. PNW-112, 45 pp.

Wingfield MJ, Robinson DJ, 2004. Diseases and insect pests of Gmelina arborea: real threats and real opportunities. New Forest 28: 227-243. https://doi.org/10.1023/B:NEFO.0000040950.01256.ed




DOI: 10.5424/fs/2018271-12236

Webpage: www.inia.es/Forestsystems