Effect of environmental factors on the composition of terrestrial bryophyte and lichen species in Scots pine forests on fixed sand dunes

Mari Tilk, Katri Ots, Tea Tullus


Aim of the study: To investigate terrestrial bryophyte and lichen species richness and environmental factors affecting the composition of species.

Area of the study: Four Boreal zone fixed dunes were selected in the coastal area of the Baltic Sea in southwest Estonia.

Material and methods: Non-metric multidimensional scaling was performed to analyse distribution patterns and environmental factors like canopy cover, photosynthetically active radiation, soil organic horizon thickness and decomposition rates, soil volumetric water content, soil pH and electrical conductivity and soil nutrients correlated with bryophyte and lichen species composition.

Main results: Thirty bryophytes and 22 lichens were found on 232 sample plots, the most frequent species were Pleurozium schreberi (Willd. ex Brid.) Mitt., Hylocomium splendens (Hedw.) Schimp., Dicranum polysetum Sw. ex anon., Cladonia arbuscula (Wallr.) Flot. and Cladonia furcata (Huds.) Schrad. The lichen species richness was highest on the slopes of the dunes and decreased towards the bottoms and tops; bryophyte species richness was higher on the bottoms and decreased towards the tops of the dunes.

Research highlights: The composition of bryophytes and lichens is significantly influenced by the aspect and the location on the dune, light conditions, soil pH, soil salinity (measured as electrical conductivity) and volumetric water content, thickness of moderately decomposed organic horizon and vascular plant species cover.


Inland dunes; terrestrial bryophyte and lichen communities; environmental factors; topography.


Inland dunes; terrestrial bryophyte and lichen communities; environmental factors; topography

Full Text:



Ahti T, Oksanen J, 1990. Epigeic lichen communities of Taiga and Tundra regions. Vegetatio 86: 39—70. https://doi.org/10.1007/BF00045134

Auslander M, Nevo E, Inbar M, 2003. The effects of slope orientation on plant growth, developmental instability and susceptibility to herbivores. J Arid Environ 55: 405—416. https://doi.org/10.1016/S0140-1963(02)00281-1

Bates D, Maechler M, Bolker B, Walker S, 2015. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw 67: 1—48. https://doi.org/10.18637/jss.v067.i01

Bond-Lamberty B, Gower ST, 2007. Estimation of stand-level leaf area for boreal bryophytes. Oecologia 151: 584—592. https://doi.org/10.1007/s00442-006-0619-5

Canullo R, Starlinger F, Giordani P, 2013. Chapter 13 - Diversity and composition of plant and lichen species. Dev Environ Sci 12: 237—250.

Chapin F, Vitousek P, van Cleve K, 1986. The nature of nutrient limitation in plant communities. Am Nat 127: 48—58. https://doi.org/10.1086/284466

Ciccarelli D, 2015. Mediterranean coastal dune vegetation: Are disturbance and stress the key selective forces that drive the psammophilous succession? Estuar Coast Shelf Sci 165: 247—253. https://doi.org/10.1016/j.ecss.2015.05.023

Cogoni A, Brundu G, Zedda L, 2011. Diversity and ecology of terricolous bryophyte and lichen communities in coastal areas of Sardinia (Italy). Nova Hedwigia 92: 159—175. https://doi.org/10.1127/0029-5035/2011/0092-0159

Dufrene M, Legendre P, 1997. Species assemblages and indicator species: the need for a flexible asymmetical approach. Ecol Monogr 67: 345—366. https://doi.org/10.2307/2963459

Düll R, 1991. Zeigerwerte von Laub-und Lebermoose. In: Zeigerwerte von Pflanzen in Mitteleuropa; Ellenberg H, Weber H, Düll R, Wirth V, Werner W Paulissen D (eds). Scripta Geobotanica 18: 175—214.

Forey E, Chapelet B, Vitasse Y, Tilquin M, Touzard B, Michalet R, 2008. The relative importance of disturbance and environmental stress at local and regional scales in French coastal sand dunes. J Veg Sci 19: 493–502. https://doi.org/10.3170/2008-8-18392

Frego KA, 2007. Bryophytes as potential indicators of forest integrity. Forest Ecol Manag 274: 65—75. https://doi.org/10.1016/j.foreco.2007.01.030

Grytnes JA, Heegaard E, Ihlen PG, 2006. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecol 29: 241—246. https://doi.org/10.1016/j.actao.2005.10.007

Güsewell S, 2004. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol 164: 243—266. https://doi.org/10.1111/j.1469-8137.2004.01192.x

Hale ME, 1974. The Biology of Lichens. William Clowes & Sons Limited, London. 192 pp.

Hill MO, 1979. The development of a flora in even-aged plantations. In: The Ecology of Even-aged Forest Plantations; Ford ED, Malcolm DC, Atterson J (eds). pp: 175—192. Institute of Terrestrial Ecology, Cambridge.

Ingerpuu N, 2002. Bryophyte diversity and vascular plants. Dissertationes Biologicae Universitatis Tartuensis, Tartu.

Ingerpuu N, Kalda A, Kannukene L, Krall H, Leis M, Vellak K, 1998. Key-book of Estonian bryophytes. EPMÜ Zooloogia ja Botaanika Instituut, Tartu.

Jenny H,1941. Factors of Soil Formation. McGraw Hill, New York.

Jun R, Rozé F, 2005. Monitoring bryophytes and lichens dynamics in sand dunes: example on the French Atlantic coast. In: Dunes and Estuaries 2005; Herrier J-L, Mees J, Salman A, Seys J, Van Nieuwenhuyse H, Dobbelaere I (eds). VLIZ Special Publication, Koksijde.

Jüriado I, Kämärä M-L, Oja E, 2016. Environmental factors and ground disturbance affecting the composition of species and functional traits of ground layer lichens on grey dunes and dune heaths of Estonia. Nord J Bot 34: 244—255. https://doi.org/10.1111/njb.00936

Ketner-Oostra R, Sykora KV, 2000. Vegetation succession and lichen diversity on dry coastal calcium-poor dunes and the impact of management experiments. J Coast Conserv 6: 191—206. https://doi.org/10.1007/BF02913815

Koerselman W, Meuleman AF, 1996. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J Appl Ecol 33: 1441—1450. https://doi.org/10.2307/2404783

Kolari P, Pumpanen J, Kulmala L, Ilvesniemi H, Nikinmaa E, Grönholm T, Hari P, 2006. Forest floor vegetation plays an important role in photosynthetic production of boreal forests. Forest Ecol Manag 221: 241—248. https://doi.org/10.1016/j.foreco.2005.10.021

Kösta H, Tilk M, 2008. Variability of bryophytes and lichens on a forested coastal dune Tõotusemägi in Southwestern Estonia. Forestry Studies 49: 71—80.

Košuthovà A, Svitkovà I, Pišùt I, Senko D, Valachovic M, Zaniewski PT, Hàjek M, 2015. Climatic gradients within temperate Europe and small-scale species composition of lichen-rich dry acidophilous Scots pine forests. Fungal Ecol 14: 8—23. https://doi.org/10.1016/j.funeco.2014.10.005

Lane C, Wright SJ, Roncal J, Maschinski J, 2008. Characterizing environmental gradients and their influence on vegetation zonation in a subtropical coastal sand dune system. J Coastal Res 24: 213—224. https://doi.org/10.2112/07-0853.1

Latorre EC, Fagúndez C, Dacosta E, Canavero A, 2013. Composition and vegetation structure in a system of coastal dunes of the "de la Plata" river, Uruguay: a comparison with Legrands’s descriptions (1959). Braz J Bot 36: 9—23. https://doi.org/10.1007/s40415-013-0009-2

Lemauviel S, Gallet S, Rozé F, 2003. Sustainable management of fixed dunes: Example of a pilot site in Brittany (France). C.R. Biol 326: 183—191. https://doi.org/10.1016/S1631-0691(03)00056-8

Löbel S, Dengler J, Hobohm C, 2006. Species richness of vascular plants, bryophytes and lichens in dry grasslands: The effects of environment, landscape structure and competition. Folia Geobot 41: 377—393. https://doi.org/10.1007/BF02806555

Magnusson M, 1982. Composition and succession of lichen communities in an inner coastal area in southern Sweden. The Lichenologist 14: 153—163. https://doi.org/10.1017/S0024282982000292

Mandre M, Tilk M, Kõresaar P, 2008. Chemical characteristics of soils in Scots pine forests of Cladina and Vaccinium vitis-idaea site types on coastal dunes of Baltic Sea. Forestry Studies 49: 5—12.

Masing V, 1979. Botaanika III. Valgus, Tallinn, 414 pp.

Márialigeti S, Tinya F, Bidló A, Ódor P, 2016. Environmental drivers of the composition and diversity of the herb layer in mixed temperate forests in Hungary. Plant Ecol 217: 549—563. https://doi.org/10.1007/s11258-016-0599-4

McCune B, Mefford MJ, 2011. PC-ORD. Multivariate Analysis of Ecological Data. Version 6. MjM Software, Oregon.

MCPFE Liaison Unit Vienna, 2002. Improved Pan-European indicators for sustainable forest management. Liaison Unit Vienna, Vienna, 6 pp.

McLachlan A, Brown AC, 2006. The Ecology of Sandy Shores. Academic Press, Burlington.

Mielke PW, Berry KJ, Johnson ES, 1976. Multi-response permutation procedures for a priori classifications. Commun Stat– Theor M 5: 1409—1424.

Oechel WC, Van Cleve K, 1986. The role of bryophytes in nutrient cycling in the Taiga. In: Forest ecosystems in the Alaskan taiga; Van Cleve K, Chapin IF, Flanagan PW, Viereck LA, Dyrness CT (eds). pp: 121—137. Springer, Berlin. https://doi.org/10.1007/978-1-4612-4902-3_9

Oksanen J, 2015. Multivariate Analysis of Ecological Communities in R: vegan tutorial. http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos, et. al., 2016. Vegan: Community Ecology Package. R package version 2.4-1. https://cran.r-project.org/web/packages/vegan/index.html.

Örd A, 1972. On soils of dune forests in South-western Estonia. Forestry Studies 9: 207—221. [In Estonian].

Palmquist K, 2000. Carbon economy in lichens. New Phytol 148: 11—36. https://doi.org/10.1046/j.1469-8137.2000.00732.x

Pausas JG, 1994. Species richness patterns in the understorey of Pyrenean Pinus sylvestris forest. J Veg Sci 5: 517—524. https://doi.org/10.2307/3235978

Pharo EJ, Beattie AJ, Binns D, 1999. Vascular plant diversity as a surrogate for bryophyte and lichen diversity. Conserv Biol 13: 282—292. https://doi.org/10.1046/j.1523-1739.1999.013002282.x

Pihelgas E, 1983. Metsabioloogia. Valgus, Tallinn. 223 pp.

Proctor MC, 2008. Physiological ecology. In: Bryophyte Biology 2; Goffinet B, Shaw AJ, (eds). pp: 237—268. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511754807.007

R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/.

Randlane T, Saag A, Suija A, 2016. Lichenized, lichenicolous and allied fungi of Estonia. Ver. December 31, 2016. http://esamba.bo.bg.ut.ee/checklist/est/home.php.

Rivis R, Kont A, Ratas U, Palginõmm V, Antso K, Tõnisson H, 2016. Trends in the development of Estonian coastal land cover and landscapes caused by natural changes and human impact. J Coast Conserv 20: 199—209. https://doi.org/10.1007/s11852-016-0430-3

Sewerniak P, 2016. Differences in early dynamics and effects of slope aspect between naturally regenerated and planted Pinus sylvestris woodland on inland dunes in Poland. iForest 9: 875—882.

Sewerniak P, Jankowski M, 2017. Topographically-controlled site conditions drive vegetation pattern on inland dunes in Poland. Acta Oecol 82: 52—60. https://doi.org/10.1016/j.actao.2017.06.003

Sewerniak P, Jankowski M, Dąbrowski M, 2017. Effect of topography and deforestation on regular variation of soils on inland dunes in the Toruń Basin (N Poland). Catena 149: 318—330. https://doi.org/10.1016/j.catena.2016.10.008

Solon J, Degòrski M, Roo-Zielińska E, 2007. Vegetation response to a topographical-soil gradient. Catena 71: 309—320. https://doi.org/10.1016/j.catena.2007.01.006

Sun S-Q, Wu Y-H, Wang G-X, Zhou J, Yu D, Bing H-J, Luo J, 2013. Bryophyte species richness and composition along an altitudinal gradient in Gongga Mountain, China. PLoS ONE 8. https://doi.org/10.1371/journal.pone.0058131

Tilk M, Mandre M, Klõšeiko J, Kõresaar P, 2011. Ground vegetation under natural stress conditions in Scots pine forests on fixed sand dunes in southwest Estonia. J For Res 16: 223—227. https://doi.org/10.1007/s10310-011-0282-5

Tilk M, Tullus T, Ots K, 2017. Effects of environmental factors on the species richness, composition and community horizontal structure of vascular plants in Scots pine forests on fixed sand dunes. Silva Fenn 51: article id 6986. https://doi.org/10.14214/sf.6986

Van Der Maarel E, 2003. Some remarks on the functions of European coastal ecosystems. Phytocoenologia 33: 187—202. https://doi.org/10.1127/0340-269X/2003/0033-0187

Vasavada N, 2016. One-way ANOVA (ANalysisOfVAriance) with post-hoc Tukey HSD (Honestly Significant Difference) Test Calculator for comparing multiple treatments. http://astatsa.com/OneWay_Anova_with_TukeyHSD/.

Vaz AS, Marques J, Honrado JP, 2014. Patterns of lichen diversity in coastal sand-dunes of northern Portugal. Botanica Complutensis 38: 89—96.

Vellak K, Ingerpuu N, Leis M, Ehrlich L, 2015. Annotated checklist of Estonian bryophytes. Folia Cryptogamica Estonica 52: 109—127. https://doi.org/10.12697/fce.2015.52.14

Wirth V, 2010. Ökologische Zeigerwerte von Flechten – erweiterte und aktualisierte Fassung. Herzogia 23: 229—248. https://doi.org/10.13158/heia.23.2.2010.229

Zoladeski CA, 1991. Vegetation zonation in dune slacks on the Łeba Bar, Polish Baltic Sea Coast. J Veg Sci 2: 255—258. https://doi.org/10.2307/3235958

DOI: 10.5424/fs/2018273-13488

Webpage: www.inia.es/Forestsystems