Biodiversity study of endophytic fungi associated with two Quercus species in Iran

Saied Ghasemi, Sima Khodaei, Kaivan Karimi, Majid Tavakoli, Illaria Pertot, Mahdi Arzanlou

Abstract


Aim of study: In this study, frequency and diversity of fungal endophyte communities inhabiting twigs and branches of apparently healthy Q. macranthera and Q. brantii in East Azerbaijan and Lorestan provinces of Iran is presented.

Area of study: East Azerbaijan and Lorestan provinces in Iran.

Materials and methods: Culturable fungal endophytes were recovered from wood tissues using routine technique for isolation of fungal endophytes. The identity of fungal isolates were determined based on morphological characteristics and sequences data of ITS-rDNA region and Beta-tubulin gene. Frequency and diversity among fungal communities were analyzed using chi-square test and biodiversity indices.

Main results: The highest frequency and diversity was detected for fungal endophyte community recovered from Q. macranthera and East Azerbaijan province. The assemblage of endophytic fungi characterized in this study in healthy tissues of oak trees indicates that some of the fungi are possible latent pathogens such as Biscogniauxia mediterranea with 18.28% frequency followed by Alternaria alternata and Trichothecium roseum respectively. Two fungal taxa of Pyronema domesticum and Valsa persoonii are reported for the first time in Iran. Overall, the results of this study show that the plant species and growth location influence frequency and diversity of culturable fungal endophytic communities of Quercus in Iran.

Keywords: Quercus macranthera, Quercus brantii, Fungal endophytes, Molecular identification.

Abbreviations used: CBS (Centraal Bureau voor Schimmelcultures); CCTU (Culture Collection of University of Tabriz); GTR (General Time Reversible); HKY (Hasegawa Kishino Yano); ITS-rDNA (Internal Transcribed Space); km (kilometer) ; PDA (Potato Dextrose Agar); TUB (Tubulin).


Full Text:

XML HTML PDF

References


Aly AH, Debbab A, Kjer J, Proksch P, 2010. Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41: 1-16. https://doi.org/10.1007/s13225-010-0034-4

Anselmi N, Cellerino GP, Franceschini A, Granata G, Luisi N, Marras F, Mazzaglia A, Mutto Accordi S, Ragazzi A, 2004. Geographic distribution of fungalendophytes of Quercus sp. in Italy. In: Endophytism in Forest Trees; Ragazzi A, Moricca S, Dellavalle I (eds). pp: 73-89. AISF, Florence, Italy.

Arnold AE, Lutzoni F, 2007. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecol 88: 541-549. https://doi.org/10.1890/05-1459

Arnold AE, Engelbrecht BMJ, 2007. Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species. J Trop Ecolo 23: 369-372. https://doi.org/10.1017/S0266467407004038

Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA, 2003. Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U.S.A: PANS. pp: 100, 15649-15654.

Arnold AE, 2001. Fungal endophytes in neotropical trees: abundance, diversity, and ecological interactions. In: Tropical ecosystems: structure, diversity, and human welfare; Ganeshaiah KN, Uma Shaanker R, Bawa KS (eds). pp: 739-743. Oxford and IBH Publishing Co., New Delhi, India.

Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA, 2000. Are tropical fungal endophytes hyperdiverse? Ecol 3: 267-274. https://doi.org/10.1046/j.1461-0248.2000.00159.x

Arzanlou M, Khodaei S, 2012. Aureobasidium iranianum, a new species on bamboo from Iran. Mycosphere 3: 404-408. https://doi.org/10.5943/mycosphere/3/4/2

Bakhshizadeh M, Hashemian HR, Najafzadeh MJ, Dolatabadi S, Zarrinfar H, 2014. First report of rhinosinusitis caused by Neoscytalidium dimidiatum in Iran. J Med Microbiol 63: 1017-1019. https://doi.org/10.1099/jmm.0.065292-0

Bayman P, Angulo-Sandoval P, Baez-Ortiz Z, Lodge DJ, 1998. Distribution and dispersal of Xylaria endophytes in two tree species in Puerto Rico. Mycol Res 102: 143-149 https://doi.org/10.1017/S095375629700590X

Blumenstein K, 2010. Characterization of endophytic fungi in the genus Ulmus: putativeagents for the biocontrol of Dutch elm disease (DED). Diploma thesis, University of Kassel, Kassel, Germany.

Boddy L, Rayner ADM, 1983. Mycelial interactions, morphogenesis and ecology of Phlebia radiata and P. rufa from oak. Trans Br Mycol Soc 80 (3): 437-448. https://doi.org/10.1016/S0007-1536(83)80040-0

Bills GF, Polishook JD, 1992. Recovery of endophytic fungi from Chamaecyparis thyoides. Sydowia 44: 1-12.

Cannon CD, Simmons CM, 2002. Diversity and host preference of leaf endophytic fungi in the Iwokrama forest reserve, Guyana. Mycologia 94: 210-220. https://doi.org/10.1080/15572536.2003.11833226

Carroll GC, Carroll FE, 1978. Studies on the incidence of coniferous needle endophytes in the Pacific Northwest. Can J Bot 56: 3034-3043. https://doi.org/10.1139/b78-367

Costa Pinto LS, Azeved JL, Pereira JO, Carneiro Vieira ML, Labate CA, 2000. Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phyto 147: 609-615. https://doi.org/10.1046/j.1469-8137.2000.00722.x

Davari M, Payghami E, Javanshir A, Ebrahimi T, 2003. Etiology of oak (Quercus macranthera) decline in Hatam-Baig forest of Meshkinshahr area. Agric Sci (Tabriz) 13(3): 1-14.

Estrada C, Wcislo WT, Van Bael SA, 2013, Symbiotic fungi alter plant chemistry that discourages leaf-cutting ants. New Phytol 198: 241-251. https://doi.org/10.1111/nph.12140

Fisher PJ, Petrini O, Petrini LE, Sutton BC, 1994. Fungal endophytes from the leaves and twigs of Quercus ilex L. from England, Majorca and Switzerland. New Phytol 127: 133-137. https://doi.org/10.1111/j.1469-8137.1994.tb04267.x

Fisher PJ, Graf F, Petrini LE, Sutton BC, Wookey PA, 1995. Fungal endophytes of Dryas octopetala from a high polar semidesert and from the Swiss Alps. Mycologia 87: 319-323. https://doi.org/10.1080/00275514.1995.12026536

Gamboa MA, Bayman P, 2001. Communities of endophytic fungi in leaves of a tropical timber tree (Guarea guidonia: Meliaceae). Biotropica 33:352-360. https://doi.org/10.1111/j.1744-7429.2001.tb00187.x

Frohlich J, Hyde KD, 1999. Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8: 977-1004. https://doi.org/10.1023/A:1008895913857

Giauque H, Hawkes CV, 2013. Climate affects symbiotic fungal endophyte diversity and performance. Amer J Bot 100(7): 1435-44. https://doi.org/10.3732/ajb.1200568

Glass NL, Donaldson GC, 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323-1330.

Gonzalez V, Tello ML, 2011. The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers 47: 29-42. https://doi.org/10.1007/s13225-010-0073-x

Hajizadeh A, Amini J, Abdollahzadeh J, 2015. New records of endophytic fungi isolated from oak trees in Kurdistan province (Iran). Rostaniha 16(1): 109-122.

Hata K and Futai K, 1996. Variation in fungal endophyte populations in needles of the genus Pinus. Can J Bot 74: 103-114. https://doi.org/10.1139/b96-015

Helander M, Ahlholm J, Sieber TN, Hinneri S, Saikkonen K, 2007. Fragmented environment affects birch leaf endophytes. New Phytol 175: 547-553. https://doi.org/10.1111/j.1469-8137.2007.02110.x

Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F, 2007. Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42: 543-555. https://doi.org/10.1016/j.ympev.2006.07.012

Karimi K, Khodaei S, Rota-Stabelli O, Arzanlou M. Pertot I, 2016. Identification and Characterization of two new Fungal Pathogens of Polygonatum odoratum (Angular Solomon's seal) in Italy. J Phytopathol 164: 1075-1084. https://doi.org/10.1111/jph.12528

Katoh K, Toh H, 2008. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9: 286-298. https://doi.org/10.1093/bib/bbn013

Kwasna H., Szewczyk W., Behnke-Borowczyk J, 2016. Fungal root endophytes of Quercus robur subjected to flooding. For Pathol 46: 35-46.

Maheswari S, Rajagopal K, 2013. Biodiversity of endophytic fungi in Kigelia pinnata during two different seasons. Curr Sci 104 (4): 515-518.

Mejia LD, Rojas EI, Maynard Z, Arnold AE, Van Bael SA, Samuels GJ, Robbins N, Herre EA, 2008. Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol Control 46: 4-14. https://doi.org/10.1016/j.biocontrol.2008.01.012

Mirabolfathy M, 2013. Outbreak of charcoal disease on Quercus spp. and Zelkova carpinifolia trees in forests of Zagros and Alborz mountains in Iran. Iran J Plant Pathol 49 (2): 77-79.

Mohali S, Burgess TI, Wingfield MJ, 2005. Diversity and host association of the tropical tree endophyte Lasiodiplodia theobromae revealed using simple sequence repeat markers. For Pathol 35: 385-396.

Möller EM, Bahnweg G, Sandermann H, Geiger HH, 1992. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 20: 6115-6116. https://doi.org/10.1093/nar/20.22.6115

Nalini MS, Sunayana N, Prakash HS, 2014. Endophytic Fungal Diversity in Medicinal Plants of Western Ghats, India. Int J Biodivers 2014, 1-9. https://doi.org/10.1155/2014/494213

Nylander JAA, 2004. MrModeltest v. 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.

Petrini O, Stone J, Carroll FE, 1982. Endophytic fungi in evergreen shrubs in western Oregon: a preliminary study. Can J Bot 60: 789-796. https://doi.org/10.1139/b82-102

Petrini O, Sieber TN, Toti L, Viret O, 1992. Ecology, Metabolite Production, and Substrate Utilization in Endophytic Fungi. Nat Toxins 1: 185-196. https://doi.org/10.1002/nt.2620010306

Petrini O, 1996. Ecological and physiological aspects of host-specificity in endophytic fungi. In: Endophytic Fungi in Grasses and Woody Plants: Systematics, Ecology and Evolution; Redlin SC, Carris LMSt, Paul MN (eds). pp: 87-100. APS Press, New York, USA.

Ragazzi A, Moricca S, Capretti P, Dellavalle I, Mancini F, Turco E, 2001. Endophytic fungi in Quercus cerris: isolation frequency in relation to phenological phase, tree health and the organ affected. Phytopathol Mediterr 40: 165-171.

Rambaut A, 2009. FigTree v1.3.1. Internet Resource: http://tree.bio.ed.ac.uk/software/figtree/.

Ronquist F, Huelsenbeck JP, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. https://doi.org/10.1093/bioinformatics/btg180

Saikkonen K, Faeth SH, Helander M, Sullivan TJ, 1998. Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Evol Syst 29: 319-343. https://doi.org/10.1146/annurev.ecolsys.29.1.319

Schardl CL, Leuchtmann A, Spiering MJ, 2004. Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55: 315-340. https://doi.org/10.1146/annurev.arplant.55.031903.141735

Seifert K, Morgan-Jones G, Gams W, Kendrick B, 2011. The genera of hyphomycetes. CBS Biodiversity Series no. 9. CBS-KNAW Fungal Biodiversity Centre, Utrecht. 997 pp.

Selim KA, El-Beih AA, Abd-El-Rahman TM, El-Diwany AI, 2011. Biodiversity and antimicrobial activity of endophytes associated with Egyptian medicinal plants. Mycosphere 2 (6): 669-678. https://doi.org/10.5943/mycosphere/2/6/7

Sieber TN, 1989. Endophytic fungi in twigs of healthy and diseased Norway spruce and white fir. Mycol Res 92: 322-326. https://doi.org/10.1016/S0953-7562(89)80073-5

Soltani J, Zaheri-Shoja M, Hamzei J, Hosseyni-Moghaddam MS, Pakvaz S. 2016. Diversity and bioactivity of bacterial endophyte community of Cupressaceae. For Pathol 46 (4): 353-361. https://doi.org/10.1111/efp.12270

Suryanarayanan TS, Kumaresan V, 2000. Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol Res 104: 1465-1467. https://doi.org/10.1017/S0953756200002859

Suryanarayanan TS, Wittlinger SK, Faeth SH, 2005. Endophytic fungi associated with cacti in Arizona. Mycol Res 109: 635-639. https://doi.org/10.1017/S0953756205002753

Sutton BC, 1980. The Coelomycetes. Fungi Imperfecti with Pycnidia, Acervuli and Stromata. CMI, Kew. 696 pp.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, 2013. MEGA 6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30: 2725-2729. https://doi.org/10.1093/molbev/mst197

Tejesvi MV, Kajula M, Mattila S, Pirttila AM, 2011. Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Divers 47: 97-107. https://doi.org/10.1007/s13225-010-0087-4

White TJ, Bruns T, Lee S, Taylor J, 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications; Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds). pp: 315-322. APS press, New York, USA: AP. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Yuan ZL, Zhang CL, Lin FC, Kubicek CP, 2010. Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China. Appl Environ Microbiol 76 (5): 1642-1652. https://doi.org/10.1128/AEM.01911-09

Zimmerman NB, Vitousek PM, 2012. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc Nation Acad Sci U.S.A: PNAS. pp: 109 (32): 13022-13027.




DOI: 10.5424/fs/2019281-14528

Webpage: www.inia.es/Forestsystems