Effects of climate change on the distribution of Pinus sylvestris L. stands in Spain. A phytoclimatic approach to defining management alternatives

Javier Mª García-López, Carmen Allué

Abstract


This paper presents some contributions on the possible effects of climatic change on the distribution of Pinus sylvestris L. stands in Spain. We studied the phytoclimatic status of Scots pine in current climate conditions (period 1951-1999) and in projected future climate conditions (2050). The phytoclimatic diagnosis followed a modified version of the Allué-Andrade phytoclimatic system. This calculation determines potential areas for Scots pine totalling 8,444,700 ha in current climate conditions and only 1,269,100 ha in 2050 conditions. The shrinkage of the area is especially pronounced in the southern half of Spain, where the model predicts that the species will practically disappear from the Baetic mountain ranges and from a major part of the Central System. In phytoclimatic terms, the maximum values of suitability correspond chiefly to the oroborealoid transitional to nemoral subtype VIII(VI)1 in current conditions, but in projected future conditions the maximum values correspond to areas currently assigned to oroarticoid transitional to oroborealoid subtypes X(VIII). The lowest viability scores are found in the southern half of the Iberian Peninsula and in Mediterranean transitional and nemoromediterranean subtypes. The results also suggest that stands of Pinus sylvestris will migrate upwards and will encounter a serious limitation in the scant availability of high mountain areas other than in the large northern massifs like the Pyrenees and the Cantabrian Cordillera, which accounts for their scant capacity to colonize new areas (2,134 km2 as opposed to extinction over 73,890 km2).

Keywords


Scots pine; suitability; phytoclimatology; convex hull

Full Text:

PDF

References


Agúndez D., Alía R., Díez R., Gil L., Pardos J.A., 1992. Variación de Pinus sylvestris L. en España: características de piñas y piñones. Invest Agrar: Sist Recur For 1(2), 151-162.

Alía R., Moro-Serrano J., Notivol E., 2001. Genetic variability of Scots pine (Pinus sylvestris) provenances in Spain: growth traits and survival. Silva Fennica 35(1), 27-38.

Alquézar J.M., Peguero-Pina J.J., García M., Gil-Pelegrín E., Ibarra N., Martin-Bernal E., 2008. El calcio en las acículas como indicador de predisposición al decaimiento en masas de Pinus sylvestris L. en la provincia de Teruel. Cuad Soc Esp Cienc For 26, 109-112.

Allué-Andrade J.L., 1990. Atlas fitoclimático de España. Taxonomías. Ministerio de Agricultura, Pesca y Alimentación, Instituto Nacional de Investigaciones Agrarias, Madrid. 221 pp.

Allué-Andrade J.L., 1997. Tres nuevos modelos para la fitoclimatología forestal: diagnosis, idoneidad y dinámica de fitoclimas. En: Puertas F., Rivas M., eds. Actas del I Congreso Forestal Hispano-Luso y II Congreso Forestal Español IRATI'97, 1, 31-40. Gráficas Pamplona. Pamplona.

Allué C., 1996. Un modelo para la caracterización fitoclimática de individuos, comunidades y fitologías. El modelo idoneidad y su aplicación a las comunidades pascícolas. Ecología 10, 209-230. Madrid.

Amarasekare P., 2003. Competitive coexistence in spatially structured environments: a synthesis. Ecology Letters 6, 1109-1122. http://dx.doi.org/10.1046/j.1461-0248.2003.00530.x

Anderson R.P., Lew D., Peterson A.T., 2003. Evaluating predictive models of species' distributions: criteria for selecting optimal models. Ecological Modelling 162, 211-232. http://dx.doi.org/10.1016/S0304-3800(02)00349-6

Araújo M.B., Guisan A., 2006. Five (or so) challenges for species distribution modelling. Journal of Biogeography 33, 1677-1688. http://dx.doi.org/10.1111/j.1365-2699.2006.01584.x

Bake B.B., Moseley R.K., 2007. Advancing treeline and retreating glaciers: implications for conservation in Yunnan, PR China. Arctic, Antarctic and Alpine Research 39(29), 200-209. http://dx.doi.org/10.1657/1523-0430(2007)39[200:ATARGI]2.0.CO;2

Bakkenes M., Alkemade J.R.M., Ihle F., Leemans R., Latour B., 2002. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology 8, 390-407. http://dx.doi.org/10.1046/j.1354-1013.2001.00467.x

Barbéro M., Loisel R., Quézel P., 1998. Pines of the Mediterranean Basin. In: Ecology and biogeography of Pinus (Richardson D.M., ed). Cambridge University Press, Cambridge, UK. pp. 153-170.

Benito M., Blazek R., Neteler M., Sánchez De Dios R., Sainz-Ollero H., Furlanello C., 2006. Machine learning models for predicting species habitat suitability: an example with Pinus sylvestris L. for the Iberian Peninsula. Ecological Modelling 197, 383-393. http://dx.doi.org/10.1016/j.ecolmodel.2006.03.015

Benito M., Sánchez De Dios R., Sainz-Ollero H., 2008. Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science 11(2), 169-178. http://dx.doi.org/10.3170/2008-7-18348

Box E.O., 1981. Predicting physiognomic vegetation types with climate variables. Vegetatio 45, 127-139. http://dx.doi.org/10.1007/BF00119222

Bradshaw A.D., Mcneilly T., 1991. Evolutionary response to global climate change. Annals of Botany 67, 5-14.

Bravo F., Del Río M., Del Peso C. (eds), 2002. El Inventario Forestal Nacional. Elemento clave para la Gestión Forestal Sostenible. Fundación General de la Universidad de Valladolid. 191 pp.

Cañellas I., Martínez F., Montero G., 2000. Silviculture and dynamics of Pinus sylvestris L. stands in Spain. Invest Agrar: Sist Recur For, Fuera de Serie n.º 1, 233-253.

Carpenter G., Gillson A.N., Winter J., 1993. DOMAIN: a flexible modeling procedure for mapping potential distributions of plants and animals. Biodiversity and Conservation 2, 667-680. http://dx.doi.org/10.1007/BF00051966

Castro J., Gómez J.M., García D., Zamora R., Hódar J.A., 1999. Seed predation and dispersal in relict Scots pine forests in southern Spain. Plant Ecol 145, 115-123. http://dx.doi.org/10.1023/A:1009865703906

Castro J., Zamora R., Hódar J., 2002. Mechanisms blocking Pinus sylvestris colonization of Mediterranean mountain meadows. Journal of Vegetation Science 13, 725-731.

Catalán G. (ed), 1991. Las regiones de procedencia de Pinus sylvestris L. y Pinus nigra Arn. subsp. Salzmannii (Dunal) Franco en España. ICONA, Madrid.

Costa M., García-Antón M., Morla C., Sainzollero H., 1990. La evolución de los bosques de la Península Ibérica: una interpretación basada en datos paleobiogeográficos. Ecología 1, 31-58.

Crawford R.M.M., 2008. Plants at the margin. Ecological limits and climate change. Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511754906

Cubash U., Von Storch H., Wastewitz J., Zorita E., 1996. Estimates of climate change in Southern Europe derived from dynamical climate model output. Climate Research 7, 129-149. http://dx.doi.org/10.3354/cr007129

Davis A.J., Jenkinson L.S., Lawton J.L., Shorrocks B., Wood S., 1998. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783-786. http://dx.doi.org/10.1038/35842 PMid:9486646

Davis M.E., Shaw R.G., Etterson J.R., 2005. Evolutionary responses to climate change. Ecology 86, 1704-1714. http://dx.doi.org/10.1890/03-0788

Del Barrio G., Harrison P.A., Berry P.M., Butt N., Sanjuan M.E., Pearson R.G., Dawson T., 2006. Integrating multiple modelling approaches to predict the potential impacts of climate change on species distributions in contrasting regions: comparison and implications for policy. Environmental Science and Policy 9, 129-147. http://dx.doi.org/10.1016/j.envsci.2005.11.005

Dullinder S., Dirnböck T., Grabherr G., 2004. Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invisibility. Jour Ecol 92, 241-252. http://dx.doi.org/10.1111/j.0022-0477.2004.00872.x

Elith J., Graham C.G., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129-151. http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x

Elith J., Leathwick J.R., 2007. Predicting species' distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Diversity and Distributions 13, 165-175. http://dx.doi.org/10.1111/j.1472-4642.2007.00340.x

Elith J., Graham C.G., 2009 Do they? how do they? WHY do they differ? On finding reasons for differing performance of species distributions models. Ecography 32, 66-77. http://dx.doi.org/10.1111/j.1600-0587.2008.05505.x

Elith J., Leathwick J.R., 2009. Species distribution models: ecological explanation and prediction across space and time. Annu Rev Col Evol Syst 40, 677-697. http://dx.doi.org/10.1146/annurev.ecolsys.110308.120159

Fielding A., Bell J., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24, 38-49. http://dx.doi.org/10.1017/S0376892997000088

Fitzpatrick M.C., Hargrove W.W., 2009. The projection of species distribution models and the problem of non-analog climate. Biodivers Conserv 18, 2255-2261. http://dx.doi.org/10.1007/s10531-009-9584-8

Franklin J., 2009. Mapping species distributions: spatial inference and prediction. Cambridge Univ Press, Cambridge, UK.

Galera R., Albertos S., 1990. Estudio de las razas morfológicas de Pinus sylvestris L. en España. Su uso en las repoblaciones. Ecología, Fuera de Serie nº 1, 527-540.

García-Antón M., Franco F., Maldonado J., Morla C., Sainz-Ollero H., 1997. New data concerning the evolution of the vegetation in Lillo Pinewood (León, Spain). Journal of Biogeography 26, 929-934.

García-López J.M., Allué C., 2003. Aplicación de la teoría de la envolvente convexa a la mejora del sistema fitoclimático Allué-Andrade. Ecología 17, 329-343.

García-López J.M., Allué C., 2008. Phytoclimatic versatility and potencial diversity of natural arboreal forest cover in peninsular Spain. Invest Agrar: Sist Recur For 17(3), 297-307.

García-López J.M., Allué C., 2009a. CLIMATFOREST 1.0, un programa actualizado para la diagnosis fitoclimática. Montes 96, 27-32.

García-López J.M., Allué C., 2009b. Cambio climático y sus posibles efectos sobre la diversidad y vulnerabilidad de los ecosistemas forestales de Castilla y León. Actas 5° Congreso Forestal Español. Sociedad Española de Ciencias Forestales y Junta de Castilla y León, Ávila, 21 al 25 de septiembre de 2009.

Gehring-Fasel J., Gusian A., Zimmermann N.E., 2007. Tree line shifts in the Swiss Alps: climate change or land abandonment. J Veg Sci 18, 571-582. http://dx.doi.org/10.1111/j.1654-1103.2007.tb02571.x

Gonzalo J., 2008. Diagnosis fitoclimática de la España Peninsular. Actualización y análisis geoestadístico aplicado. Doctoral thesis. Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros de Montes, Madrid. 559 pp.

Grace J., Berninger F., Nagy L., 2002. Impact of climate change on the treeline. Ann Bot 90, 537-544. http://dx.doi.org/10.1093/aob/mcf222

Gracia C., Gil L., Montero G., 2005. Impactos sobre el sector forestal. In: Evaluación preliminar de los impactos en España por efecto del cambio climático (Moreno J.M., coord). Ministerio de Medio Ambiente, Madrid. pp. 399-435.

Guisan A., Zimmermann N.E., 2000. Predictive habitat distribution models in ecology. Ecol Model 135, 147-186. http://dx.doi.org/10.1016/S0304-3800(00)00354-9

Guisan A., Thuiller W., 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8, 993-1009. http://dx.doi.org/10.1111/j.1461-0248.2005.00792.x

Hansen A.J., Neilson R.P., Dale V.H., Flather C.H., Iverson L.R., Currie D.J., Shafer S., Coot R., Bartlein P.J., 2001. Global change in forests: responses of species, communities and biomes. BioScience 51, 765-779. http://dx.doi.org/10.1641/0006-3568(2001)051[0765:GCIFRO]2.0.CO;2

Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int Journ Climatol 25, 1965-1978. http://dx.doi.org/10.1002/joc.1276

Hirzel A.H., Hausser J., Chessel D., Perrin N., 2002. Ecological-niche factor analysis: how to compute habitat-suitability map without absence data. Ecology 83, 2027-2036. http://dx.doi.org/10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2

Holtmeier F.K., 2003. Mountain timberlines. Ecology, patchiness, and dynamics. Advances in Global Change Research, vol 14. Kluwer Academic Publishers, Dordrecht, Boston, London.

Holtmeier F.K., Broll G., 2007. Treeline advance-driving processes and adverse factors. Landscape Online 1, 1-33. doi: 10.33097/LO.200701.

Hutchinson G.E., 1957. Concludind remarks. Cold Spting Harbor Symposium on Quantitative Biology 22, 415-427.

Huberty C.J., 1994. Applied discriminant analysis. Wiley Interscience, New York.

Klanderud K., Birks H.J.B., 2003. Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. The Holocene 13, 1-6. http://dx.doi.org/10.1191/0959683603hl589ft

Kremer A., 2007. How well can existing forests withstand climate change? In: Climate change and forest genetic diversity: implications for sustainable forest management in Europe (Koskela J., Buck A., Teissier du Cros E., eds). Bioversity International, Rome, Italy. pp. 3-17.

Leathwick J.R., Elith J., Hastie T., 2006. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological Modelling 199, 188-196. http://dx.doi.org/10.1016/j.ecolmodel.2006.05.022

Lehman A., Overton J.M., Leathwick J.R., 2002. GRASP: generalized regression analysis and spatial prediction. Ecological Modelling 157, 189-207. http://dx.doi.org/10.1016/S0304-3800(02)00195-3

Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., García-Gonzalo J., Seidl R., Delzon S., Corona P., Kolström M., Lexer M.J., Marchetti M., 2010. Climate change impacts, adaptative capacity and vulnerability of European forest ecosystems. For Ecol Manag 259(4), 698-709.

Liu C., White M., Newell G., 2009. Measuring the accuracy of species distribution models: a review. 18th World IMACS/MODSIM Congress, Cairns, Australia, 13-17 July 2009. http://mssanz.org.au/modsim09

Malanson G.P., 2001. Complex responses to global change at alpine treeline. Physical Geography 22, 333-342.

Montero G., 1994. Generalities on silviculture of Pinus sylvestris L. in Spain. Invest Agrar: Sist Recur For, Fuera de Serie n.º 3, Mountain Silviculture, 251-257.

Navarro R.M., Varo M.A., Lanjeri S., Hernández R., 2007. Cartografía de defoliación en los pinares de pino silvestre (Pinus sylvestris L.) y pino salgareño (Pinus nigra Arnold.) en la Sierra de los Filabres. Ecosistemas 16(3), 163-171.

Nakicenovic N., Alcamo J., Davis G., De Vries H.J.M., Fenhann J., Gaffin S., Gregory K., Grubler A., Jung T.Y., Kram T., La Rovere E.L., Michaelis L., Mori S., Morita T., Papper W., Pitcher H., Price L., Riahi K., Roehrl A., Rogner H.H., Sankovski A., Schlesinger M., Shukla P., Smith S., Swart R., Van Rooijen S., Victor N., Dadi Z., 2000. Special report on emissions scenarios. Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.

Oleksyn J., Tjoelker M.G., Reich P.B., 1998. Adaptation to changing environment in Scots pine populations across a latitudinal gradient. Silva Fennica 32(2), 129-140.

Pearson R.G., 2007. Species' distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.

Pearson R.G., Dawson T.P., Berry P.M., Harrison P.A., 2002. Species: a spatial evaluation of climate impact on the envelope of species. Ecological Modelling 154, 289-300. http://dx.doi.org/10.1016/S0304-3800(02)00056-X

Pearson R.G., Dawson T.P., 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope model useful? Global Ecology and Biogeography 12, 361-371. http://dx.doi.org/10.1046/j.1466-822X.2003.00042.x

Petit R.J., Hampe A., Cheddadi R., 2005. Climate changes and tree phytogeography in the Mediterranean. Taxon 54, 877-885. http://dx.doi.org/10.2307/25065474

Phillips S.J., Anderson R.P., Schapire R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231-259. http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026

Prus-Glowacki W., Stephan B.R., 1994. Genetic variation of Pinus sylvestris from Spain in relation to other European populations. Silvae Genetica 43, 7-14.

Prus-Glowacki W., Stephan B.R., Brujas E., Alía R., Marciniak A., 2003. Genetic differentiation of autochthonous populations of Pinus sylvestris (Pinaceae) from the Iberian peninsula. Plant Systematics and Evolution 239, 55-66. http://dx.doi.org/10.1007/s00606-002-0256-3

Robledo-Arnuncio J.J., Collada C., Alía R., Gil L., 2005. Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial area. Journal of Biogeography 32, 595-600, 2005. http://dx.doi.org/10.1111/j.1365-2699.2004.01196.x

Rubiales J.M., García-Amorena I., Hernández L., Génova M., Martínez F., Gómezmanzaneque F., Morla C., 2010. Late quaternary dynamics of pinewoods in the Iberian Mountains. Rev Palaeobot Palynol. 16 pp. doi: 10.1016/j.revpalbo.2009. 11.008.

Ruiz De La Torre J., 2006. Flora mayor. Organismo autónomo parques nacionales. Madrid. 1756 pp.

Solomon S., Qin D., Manning M., Chen Z., Marquis M., Avery K.B., Tignor M., Miller H.L., (eds), 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, Cambridge University Press. 996 pp.

Stockwell D.R.B., Peters D.P., 1999. The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Systems 13, 143-158. http://dx.doi.org/10.1080/136588199241391

Thomas C.D., Bodsworth E.J., Wilson R.J., Simmons A.D., Davies Z.G., Musche M., Conradt L., 2001. Ecological and evolutionary processes at expanding range margins. Nature 411, 577-581. http://dx.doi.org/10.1038/35079066 PMid:11385570

Thuiller W., 2003. Biomod. Optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology 9, 1353-1362. http://dx.doi.org/10.1046/j.1365-2486.2003.00666.x

Thuiller W., Albert C., Araújo M.B., Berry P.M., Cabeza M., Guisan A., Hickler T., Midgley G.F., Paterson J., Schurrh F.M., Sykes M.T., Zimmermann N.E., 2008. Predicting global change impacts on plant species' distributions: future challenges. Perspectives in Plant Ecology, Evolution and Systematics 9, 137-152 http://dx.doi.org/10.1016/j.ppees.2007.09.004

Verbyla D.L., Litaitis J.A., 1989. Resampling methods for evaluating classification accuracy of wildlife habitat models. Environmental Management 13, 783-787. http://dx.doi.org/10.1007/BF01868317

Villanueva J.A., 1990. El Inventario Forestal Nacional, instrumento básico para el conocimiento de la distribución y características de los montes españoles. Ecología, Fuera de Serie nº 1, 81-93.

Walter H., 1970. Vegetationszonen und Klima. Eugen Ulmer, Stuttgart.

Watson R.T., Zinyowera M.C., Moss R.H., 1997. The regional impacts of climate change: an assessment of vulnerability. A special report of IPCC Working Group II. Cambridge University Press, Cambridge, UK.

Woodward F.I., 1990. The impact of low temperatures in controlling the geographical distribution of plants. Philosophical Transactions of the Royal Society of London B 326, 585-593. http://dx.doi.org/10.1098/rstb.1990.0033

Zadeh L.A., 1965. Fuzzy sets. Information and Control 8(3), 338-353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X




DOI: 10.5424/fs/2010193-8694

Webpage: www.inia.es/Forestsystems