Biomass allometry and carbon factors for a Mediterranean pine (Pinus pinea L.) in Portugal

Alexandra Cristina Correia, Margarida Tomé, Pacheco Carlos, Faias Sónia, Ana Dias, João Freire, Pedro Ochoa Carvalho, João Santos Pereira

Abstract


Forests play an important role in the global carbon balance because they offset a large portion of the carbon dioxide emitted through human activities. Accurate estimates are necessary for national reporting of greenhouse gas inventories, carbon credit trading and forest carbon management but in Portugal reliable and accessible forest carbon measurement methodologies are still lacking for some species. The objective of this study was to provide forest managers with a comprehensive database of carbon factors and equations that allows estimating stand-level carbon stocks in Pinus pinea L. (P. pinea), regardless of the tree inventory information available. We produced aboveground biomass and stem volume equations, biomass expansion factors (BEF) by component as well as wood basic density (WBD) and component carbon fraction in biomass. A root-to-shoot ratio is also presented using data from trees in which the root system was completely excavated. We harvested 53 trees in centre and south Portugal covering different sizes (6.5 to 56.3 cm), ages (10 to 45 years) and stand densities (20 to 580 trees ha-1). The results indicate that aboveground allometry in P. pinea is not comparable with other pines and varies considerably with stand characteristics, highlighting the need to develop stand-dependent factors and equations for local or regional carbon calculations. BEFaboveground decreases from open (1.33±0.03 Mg m-3) to closed stands (1.07±0.01 Mg m-3) due to a change in biomass allocation pattern from stem to branches. Average WBD was 0.50±0.01 Mg m-3 but varies with tree dimensions and the root-to-shoot ratio found was 0.30±0.03. The carbon fraction was statistically different from the commonly used 0.5 factor for some biomass components. The equations and factors produced allow evaluating carbon stocks in P. pinea stands in Portugal, contributing to a more accurate estimation of carbon sequestered by this forest type.

Keywords


Stone pine; carbon balance; climate change; biomass inventory

Full Text:

PDF

References


António N., Tomé M., Tomé J., Soares P., Fontes L., 2007. Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass. Canadian Journal of Forest Research 37, 895-906. http://dx.doi.org/10.1139/X06-276

Benito Garzón M., Sánchez De Dios R., Sainz Ollero H., 2008. Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science 11, 169-178. http://dx.doi.org/10.3170/2008-7-18348

Bert D., Danjon F., 2006. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). Forest Ecology and Management 222, 279-295. http://dx.doi.org/10.1016/j.foreco.2005.10.030

Bond-Lamberty B., Wang C., Gower S.T., 2002. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Canadian Journal of Forest Research 32, 1441-1450. http://dx.doi.org/10.1139/x02-063

Cairns M.A., Brown S., Helmer E.H., Baumgardner G.A., 1997. Root biomass allocation in the world's upland forests. Oecologia 111, 1-11. http://dx.doi.org/10.1007/s004420050201

Calama R., Montero G., 2006. Stand and tree-level variability on stem form and tree volume in Pinus pinea L.: a multilevel random components approach. Invest Agrar: Sist Recur For 15, 24-41.

Carvalho A. 1996. Madeiras Portuguesas – Estrutura anatómica, propriedades, utilizações. Lisboa, Direcção Geral de Florestas.

Clark D.A., Brown S., Kicklighter D.W., Chambers J.Q., Thomlinson J.R., Ni J., 2001. Measuring net primary production in forests: concepts and field methods. Ecological Applications 11, 356-370. http://dx.doi.org/10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2

David T.S., Henriques M.O., Kurz-Besson C., Nunes J., Valente F., Vaz M., Pereira J.S., Siegwolf R., Chaves M.M., Gazarini L.C., David J.S., 2007. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiology 27, 793-803. http://dx.doi.org/10.1093/treephys/27.6.793 PMid:17331898

Del Río M., Barbeito I., Bravo-Oviedo A., Calama R., Cañellas I., Herrero C., Bravo F., 2008. Carbon sequestration in Mediterranean pine forests. In: Managing forest ecosystems: the chalenge of climate change (Bravo F., Lemay V., Jandl R., Gadow K.V., eds). Netherlands, Kluwer Academic Publishers. Vol. 17, pp. 215-241.

Delucia E.H., Maherali H., Carey E.V., 2000. Climate-driven changes in biomass allocation in pines. Global Change Biology 6, 587-593. http://dx.doi.org/10.1046/j.1365-2486.2000.00338.x

Evrendilek F., Berberoglu S., Taskinsu-Meydan S., Yilmaz E., 2006. Quantifying carbon budgets of conifer Mediterranean forest ecosystems, Turkey. Environmental Monitoring and Assessment 119, 527-543. http://dx.doi.org/10.1007/s10661-005-9041-4 PMid:16741812

Fady B., Fineschi S., Vendramin G.G., 2004. EUFORGEN Technical Guidelines for genetic conservation and use of Italian stone pine (Pinus pinea). International Plant Genetic Resources Institute Rome, Italy. p. 6.

FAO, 1998. World reference base for soil resources. Rome, Food and Agriculture Organization of the United Nations.

Fernández G.B., 2004. El pino piñonero (Pinus pinea L.) en Andalucía. Sevilla, Dirección General de Gestión del Medio Natural.

Freire J.P, 2009. Modelação do crescimento e da produção de pinha no pinheiro manso.Doctoral thesis. Instituto Superior de Agronomia, Lisboa. [In Portuguese].

Gracia C., Sabaté S., 2002. Report of the COST E21 WG 1 Expert meeting on Biomass Expansion Factors (BEF). COST E21, WG1-biomass Workshop, Besalú.

Grunzweig J.M., Gelfand I., Fried Y., Yakir D., 2007. Biogeochemical factors contributing to enhanced carbon storage following afforestation of a semi-arid shrubland. Biogeosciences 4, 891-904. http://dx.doi.org/10.5194/bg-4-891-2007

Hamilton K., Bayon R., Turner G., Higgins D., 2007. State of the voluntary carbon markets 2007: picking up steam. Ecosystem Marketplace and New Carbon Finance.

Ilomaki S., Nikinmaa E., Makela A., 2003. Crown rise due to competition drives biomass allocation in silver birch. Canadian Journal of Forest Research 33, 2395-2404. http://dx.doi.org/10.1139/x03-164

IPCC, 2003. IPCC Good Practice Guidance for LULUCF. Kanagawa, Japan, Institute for Global Environmental Strategies (IGES) for the IPCC.

Janssens I.A., Sampson D.A., Cermak J., Meiresonne L., Riguzzi F., Overloop S., Ceulemans R., 1999. Above- and belowground phytomass and carbon storage in a Belgian Scots pine stand. Annals of Forest Science 56, 81-90. http://dx.doi.org/10.1051/forest:19990201

King J.S., Giardina C.P., Pregitzer K.S., Friend A.L., 2007. Biomass partitioning in red pine (Pinus resinosa) along a chronosequence in the Upper Peninsula of Michigan. Canadian Journal of Forest Research 37, 93-102. http://dx.doi.org/10.1139/x06-217

Lamlom S.H., Savidge R.A., 2003. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass & Bioenergy 25, 381-388. http://dx.doi.org/10.1016/S0961-9534(03)00033-3

Lehtonen A., Makipaa R., Heikkinen J., Sievanen R., Liski J., 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188, 211-224. http://dx.doi.org/10.1016/j.foreco.2003.07.008

Levy P.E., Hale S.E., Nicoll B.C., 2004. Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain. Forestry 77, 421-430. http://dx.doi.org/10.1093/forestry/77.5.421

Mcdowell N., Barnard H., Bond B.J., Hinckley T., Hubbard R.M., Ishii H., Kostner B., Magnani F., Marshall J.D., Meinzer F.C., Phillips N., Ryan M.G., Whitehead D., 2002. The relationship between tree height and leaf area: sapwood area ratio. Oecologia 132, 12-20. http://dx.doi.org/10.1007/s00442-002-0904-x

Mencuccini M., Grace J., 1995. Climate influences the leaf -area sapwood area ratio in scots pine. Tree Physiology 15, 1-10. http://dx.doi.org/10.1093/treephys/15.1.1 PMid:14966005

Montero G., Ruiz-Peinado R., Muñoz M., 2005. Producción de Biomassa y fijación de CO2 por los bosques españoles. Monografias INIA Serie Forestal, 270.

Mutke S., Gordo J., Gil L., 2005a. Cone yield characterization of a stone pine (Pinus pinea L.) clone bank. European Journal of Forest Research 54, 189-197.

Mutke S., Gordo J., Gil L., 2005b. Variability of Mediterranean Stone pine cone production: yield loss as response to climate change. Agricultural and Forest Meteorology 132, 263-272. http://dx.doi.org/10.1016/j.agrformet.2005.08.002

Mutke S., Gordo J., Climent J., Gil L., 2003. Shoot growth and phenology modelling of grafted Stone pine (Pinus pinea L.) in Inner Spain. Annals of Forest Science 60, 527-537. http://dx.doi.org/10.1051/forest:2003046

Mutke S., Sievanen R., Nikinmaa E., Perttunen J., Gil L., 2005c. Crown architecture of grafted Stone pine (Pinus pinea L.): shoot growth and bud differentiation. Trees-Structure and Function 19, 15-25. http://dx.doi.org/10.1007/s00468-004-0346-7

Myers R., 1990. Classical and modern regression with applications. PWS publishers.

Ohlemuller R., Gritti E.S., Sykes M.T., Thomas C.D., 2006. Quantifying components of risk for European woody species under climate change. Global Change Biology 12, 1788-1799. http://dx.doi.org/10.1111/j.1365-2486.2006.01231.x

Oliveras I., Martínez-Vilalta J., Jiménezortiz T., Lledo M.J., Escarre A., Pinol J., 2003. Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain. Plant Ecology 169 131-141. http://dx.doi.org/10.1023/A:1026223516580

Parresol B.R., 1999. Assessing tree and stand biomass: a review with examples and critical comparisons. Forest science 45, 573-593.

Parresol B.R., 2001. Additivity of nonlinear biomass equations. Canadian Journal of Forest Research 31, 865-878. http://dx.doi.org/10.1139/x00-202

Peichl M., Arain M.A., 2007. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. Forest Ecology and Management 253, 68-80. http://dx.doi.org/10.1016/j.foreco.2007.07.003

Porté A., Trichet P., Bert D., Loustau D., 2002. Allometric relationships for branch and tree woody biomass of Maritime pine (Pinus pinaster Ait.). Forest Ecology and Management 158, 71-83. http://dx.doi.org/10.1016/S0378-1127(00)00673-3

Quézel P., Medáil F. 2003. Écologie et biogeography des forêts du bassin méditerranéen. Paris, Elsevier.

Ravindranath N.H., Ostwald M., 2008. Carbon Inventory Methods - Handbook for Greehouse Gas, Carbon Mitigation and Roudwood Production Projects. Springer. http://dx.doi.org/10.1007/978-1-4020-6547-7

Ritson P., Sochacki S., 2003. Measurement and prediction of biomass and carbon content of Pinus pinaster trees in farm forestry plantations, south-western Australia. Forest Ecology and Management 175, 103-117. http://dx.doi.org/10.1016/S0378-1127(02)00121-4

Ryan M.G., Yoder B.J., 1997. Hydraulic limits to tree height and tree growth. Bioscience 47, 235-242. http://dx.doi.org/10.2307/1313077

Ryu Y., Sonnentag O., Nilson T., Vargas R., Kobayashi H., Wenk R., Baldocchi D.D., 2010. How to quantify tree leaf area index in an open savanna ecosystem: a multi-instrument and multi-model approach. Agricultural and Forest Meteorology 150, 63-76. http://dx.doi.org/10.1016/j.agrformet.2009.08.007

Saint-Andre L., M'bou A.T., Mabiala A., Mouvondy W., Jourdan C., Roupsard O., Deleporte P., Hamel O., Nouvellon Y., 2005. Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. Forest Ecology and Management 205, 199-214. http://dx.doi.org/10.1016/j.foreco.2004.10.006

SAS, 2004. SAS 9.1.3 Service Pack 3 WIN_PRO platform. Cary, NC, SAS Institute Inc.

Soares P., Tomé M., Skovsgaard J.P., Vanclay J., 1995. Evaluating a growth model for forest management using continuous forest inventory data. Forest Ecology and Management 71, 251-265. http://dx.doi.org/10.1016/0378-1127(94)06105-R

Somogyi Z., Cienciala E., Makipaa R., Muukkonen P., Lehtonen A., Weiss P., 2006. Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research 126, 197-207. http://dx.doi.org/10.1007/s10342-006-0125-7

Tobin B., Nieuwenhuis M., 2007. Biomass expansion factors for Sitka spruce (Pinea sitchensis Bong. Carr.) in Ireland. European Journal of Forest Research, 189-196. http://dx.doi.org/10.1007/s10342-005-0105-3

Tomé M., Barreiro S., Paulo J.A., Meyer A., Ramos T., 2007. Inventário Florestal 2005-2006. Áreas, volumen e biomassas dos povoamentos florestais - Relatório resultante do protocolo de cooperação DGRF/ISA no âmbito do Inventário Florestal Nacional de 2005-2006. Lisboa, Universidade Técnica de Lisboa, Instituto Superior de Agronomia, Centro de Estudos Florestais.

Vanclay J., Skovsgaard J.P., 1997. Evaluating forest growth models. Ecological Modeling 98, 1-12. http://dx.doi.org/10.1016/S0304-3800(96)01932-1

Vendramin G.G., Fady B., González-Martínez S.C., Hu F.S., Scotti I., Sebastiani F., Soto A., Petit R.J., 2008. Genetically depauperate but widespread: the case of an emblematic mediterranean pine. Evolution 62, 680-688. http://dx.doi.org/10.1111/j.1558-5646.2007.00294.x PMid:17983461

Waring R.H., Schroeder P.E., Oren R., 1982. Application of the pipe model theory to predict canopy leafarea. Canadian Journal of Forest Research 12, 556-560. http://dx.doi.org/10.1139/x82-086

Zianis D., Muukkonen P., Mäkipää R., Mencucinni M., 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4, 63.

Zobel B.J., Buijtenen J.P., 1989. Wood variation. Its causes and control. Berlin, Springer-Verlag. http://dx.doi.org/10.1007/978-3-642-74069-5




DOI: 10.5424/fs/2010193-9082

Webpage: www.inia.es/Forestsystems