Optimizing thinnings for timber production and carbon sequestration in planted teak (Tectona grandis L.f.) stands

  • María-Alejandra Quintero-Méndez Universidad de Los Andes. Facultad de Ciencias Forestales y Ambientales, Av. Principal Chorros de Milla, Conjunto Forestal, edificio principal, Mérida.
  • Mauricio Jerez-Rico Universidad de Los Andes. Facultad de Ciencias Forestales y Ambientales, Av. Principal Chorros de Milla, Conjunto Forestal, edificio principal, Mérida. http://orcid.org/0000-0001-9029-867X

Abstract

Aim of study: We developed an optimization model for determining thinning schedules in planted teak (Tectona grandis L.f.) stands that maximize the financial output in terms of soil expectation value (SEV) and net present value (NPV) considering a) the simultaneous optimization of timber production and carbon (C) sequestration and b) only for C sequestration.

Area of study: Planted teak forests in the western alluvial plains of Venezuela.

Material and methods: We integrated a stand growth and yield model with a constrained optimization model based on genetic algorithms (GA) for determining optimal thinning schedules (number, age, and removal intensity) that maximize SEV when simultaneously managing for timber production and C sequestration. The data came from permanent plots established in planted teak stands with remeasurements from 2 to 32 yr.-old. Plots differ in site quality, initial spacing, and thinning schedules. We obtained optimal thinning schedules for several scenarios combining site quality, initial spacing, interest rates, harvest and transport costs, as well as timber and C prices. The stand growth and yield model estimates timber products and C flows (storage and emissions) until most stored C is reemitted to the atmosphere.

Main results: When considering simultaneously both, timber production and C sequestration, the scenario with the maximum SEV consisted of initial stand densities = 1,111 trees ha-1, site quality (SQ) I, harvest age 20 years, and four thinnings (ages 6, 10, 14, 17 with removal intensities 26 %, 28 %, 39 %, and 25 % of stand basal area respectively). For maximizing C sequestration only, the best schedule consisted of 1,600 trees ha-1, SQ I, harvest age 25 years, with no-thinning. A sensitivity analysis showed that optimal schedules and SEV were highly sensitive to changes in interest rates, growth rates, and timber prices.

Research highlights:

  • The management schedules favoring merchantable timber production are not the same that favor C sequestration.
  • For planted teak, the objectives of maximizing timber production and carbon sequestration are in conflict because the thinning schedules that maximize financial gains from C sequestration reduce economic gains from timber and vice versa.
  • With actual timber teak and market C prices, optimal NPVW is much larger than optimal NPVC.
  • For C prices under 40 $US MgC optimizing simultaneously for timber production and C sequestration is the best option, as additional although sub-optimal revenues can be obtained from C payments.
  • Lengthening the rotation, avoiding thinnings, or reducing their intensity increase carbon storage in planted teak, although, under the analyzed scenarios, after 120 yr. almost all carbon has been re-emitted to the atmosphere.

Additional keywords: heuristics, genetic algorithms, operations research, forest management planning, stand level model, carbon stocks.

Abbreviations used: C (Carbon); GA (genetic algorithm); NPVW, NPVC, NPVT (net present value from the cash flows of timber (wood), carbon, and total); SEV (Soil (land) expectation value); dbh (diameter at 1.3 m from the ground); G (stand basal area); Gp (potential site carrying capacity in terms of G); SQ (site quality); R (rotation, harvest age); A (age); I (thinning intensity); Vob, Vub (overbark, underbark volume); gr (basal area growth rate); r (interest rate); harvest and transport costs (Hc); Pc (C price).

 

Downloads

Download data is not yet available.

Author Biographies

María-Alejandra Quintero-Méndez, Universidad de Los Andes. Facultad de Ciencias Forestales y Ambientales, Av. Principal Chorros de Milla, Conjunto Forestal, edificio principal, Mérida.

Full Professor

Escuela de Ingeniería Forestal

Doctora en Ciencas Aplicadas, University of Los Andes

Mauricio Jerez-Rico, Universidad de Los Andes. Facultad de Ciencias Forestales y Ambientales, Av. Principal Chorros de Milla, Conjunto Forestal, edificio principal, Mérida.

Full Profesor (retired) at Centro de Estudios Forestales y Ambientales de Postgrado, University of Los Andes.

Ph.D. Ecological Forest Management. Louisiana State University (USA)

 

References

Álvarez S, 2009. Optimización de la plantación forestal considerando la captura de carbono en bosque de pino-encino en la sierra Suárez, Oaxaca, México. Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingeniero de Montes. Madrid, Spain.174 pp.

Backéus S, Wikströn P, Lämås T, 2005. A model for regional analysis of carbon sequestration and timber production. For Ecol Manage 216: 28-40. https://doi.org/10.1016/j.foreco.2005.05.059

Baskent EK, Keles S, Yolasigmaz HA, 2008. Comparing multipurpose forest management with timber management, incorporating timber, carbon and oxygen values: A case study. Scand J Forest Res 23: 105-120. https://doi.org/10.1080/02827580701803536

Belavenutti P, Romero C, Díaz-Balteiro L, 2018. A critical survey of optimization methods in industrial forest plantations management. Sci Agric 75: 239-245. https://doi.org/10.1590/1678-992x-2016-0479

Bermejo I, Cañellas I, Miguel AS, 2004. Growth and yield models for teak plantations in Costa Rica. For Ecol Manage 189, 97-110. https://doi.org/10.1016/j.foreco.2003.07.031

Bettinger P, Boston K, Siry JP, Grebner DL, 2009. Forest Management and Planning. Academic Press, Elseiver. San Diego, USA. 331 pp.

Brown S, Lugo A, Chapman J, 1986. Biomass of tropical tree plantations and its implications for the global carbon budget. Can J For Res 16: 390-394. https://doi.org/10.1139/x86-067

Chaves E, Chinchilla O, 1986. Ensayos de aclareo en plantaciones de Tectona grandis L. f en Cóbano de Puntarenas, Costa Rica. Rev. Ciencias Ambientales 7:65-74.

Clutter JL, Fortson JC, Pienaar LV, Brister GH, Bailey RL, 1983. Timber Management: A Quantitative Approach. John Wiley & Sons. New York, USA. 333 pp.

De Camino R, Morales JP, 2013. La Teca en América Latina. In: Plantaciones de Teca, Mitos y Realidades (De Camino R, Morales JP, eds.). CATIE, Costa Rica. pp. 30-41.

Derwisch S, Schwendenmann L, Olschewski R, Hölscher D, 2009. Estimation and economic evaluation of aboveground carbon storage of Tectona grandis plantations in Western Panamá. New Forest 37: 227-240. https://doi.org/10.1007/s11056-008-9119-2

Díaz-Balteiro L, Rodríguez L, 2006. Optimal rotations on Eucalyptus plantations including carbon sequestration - A comparison of results in Brazil and Spain. For Ecol Manage 229: 247-258. https://doi.org/10.1016/j.foreco.2006.04.005

Dréo J, Pétrowski A, Siarry P, Taillard E, 2006. Metaheuristics for hard Optimization. Springer - Verlag. Berlin, Germany. 369 pp.

Gera N, Gera H, Bisht NS, 2011. Carbon sequestration potential of selected plantation interventions in Terai region of Uttarakhand. Indian For 137: 273-289.

Hoen HF, Solberg B, 1994. Potential and economic efficiency of carbon sequestration in forest biomass through silvicultural management. For Sci 40: 429-351.

Holland JH, 1975. Adaptation in natural and artificial systems. University of Michigan Press. Ann Harbor, USA. 334 pp.

IPCC, 1996. Report of the twelfth session of the intergovernmental panel on climate change. Reference manual and workbook of the IPCC 1996 revised guidelines for national greenhouse gas inventories. Mexico, 11-13 September 1996.

Jayaraman K, Rugmini P, 2008. Optimizing management of even-aged teak stands using growth simulation model: a case study in Kerala. J Trop For Sci 20: 19-28.

Jerez-Rico M, Coutinho S, 2017. Establishment and Management of Planted Teak Forests. In: The Global Teak Study: Analysis Evaluation and Future Potential of Teak Resources, Kollert, W. and Kleine, M. IUFRO (International Union of Forestry Research Organizations), Vienna, Austria, p 108.

Jerez M, Quintero M, Quevedo A, Moret A, 2015. Simulador de crecimiento y secuestro de carbono para plantaciones de teca en Venezuela: una aplicación en SIMILE. Bosque 36: 519-530. https://doi.org/10.4067/S0717-92002015000300018

Jerez M, Vincent L, Moret Y, González R, 2003. Regímenes de espaciamiento inicial y aclareo en plantaciones de Teca (Tectona grandis Lf) en Venezuela. Regímenes de espaciamiento inicial y aclareo en plantaciones de Teca (Tectona grandis Lf) en Venezuela.

Kaipanen T, Liski J, Pussinen A, Karjalainen T, 2004. Managing carbon sinks by changing rotation length in European forests. Environ Sci Policy 7: 205-219. https://doi.org/10.1016/j.envsci.2004.03.001

Karjalainen T, 1996. Dynamics and potentials of carbon sequestration in managed stands and wood products in Finland under changing climatic conditions. For Ecol Manage 8: 113-132. https://doi.org/10.1016/0378-1127(95)03634-2

Keles S, Baskent EZ, 2007. Modeling and analyzing timber production and carbon sequestration values of forest ecosystems: A case study. Pol J. Environ Stud 16: 473-479.

Kraenzel M, Castillo A, Moore T, Potvin C, 2003. Carbon storage of harvest-age teak (Tectona grandis) plantations, Panamá. For Ecol Manage 173: 213-225. https://doi.org/10.1016/S0378-1127(02)00002-6

Kumar BM, Long JN, Kumar P, 1995. A density management diagram for teak plantations of Kerala in peninsular India. Forest ecology and management 74:125-131. https://doi.org/10.1016/0378-1127(94)03499-M

Liski J, Pussinen A, Pingoud K, Mäkipää T, Karjalainen T, 2001. Which rotation is favorable for carbon sequestration? Can J For Res 31:2004-2013. https://doi.org/10.1139/x01-140

Lopera GJ, Gutiérrez VH, 2001. Flujo de carbono y respuesta a diferentes estrategias de manejo en plantaciones tropicales de Pinus Patula. Simposio Internacional de medición y monitoreo de la captura de carbono en ecosistemas forestales, 18-20 october 2001. Valdivia, Chile. 20 pp.

Moret AY, Jerez M, Mora A, 1998. Determinación de ecuaciones de volumen para plantaciones de teca (Tectona grandis L.) en la unidad experimental de la Reserva Forestal Caparo, Estado Barinas-Venezuela. Rev For Ven 42: 41-50.

Nepal P, Grala RK, Grebner DL, 2012. Financial feasibility of increasing carbon sequestration in harvested wood products in Missisippi. For Policy Econ 20: 16-24.

Nӧlte A, Meilbyb H, Yousefpoura R, 2018. Multi-purpose forest management in the tropics: Incorporating values of carbon, biodiversity and timber in managing Tectona grandis (teak) plantations in Costa Rica. For Ecol Manage 422: 345-357. https://doi.org/10.1016/j.foreco.2018.04.036

Olayode OO, Bada SO, Popoola L, 2015. Carbon stock in teak stands of selected forest reserves in southwestern Nigeria. Environ Nat Resour Res 5: 109 - 115. https://doi.org/10.5539/enrr.v5n3p109

Pérez D, Kanninen M, 2005. Stand growth scenarios for Tectona grandis plantations in Costa Rica. For Ecol Manage 210, 425-441. https://doi.org/10.1016/j.foreco.2005.02.037

Pienaar LV, Turnbull KJ, 1973. The Chapman-Richards Generalization of Bertalanffy's growth model for basal area growth and yield in even-aged stands. For Sci 19: 2-22.

Pohjola J, Valsta L, 2007. Carbon credits and management of Scots pine and Norway spruce stands in Finland. For Policy Econ 9: 789-798. https://doi.org/10.1016/j.forpol.2006.03.012

Pukkala T, Kurttila M. 2005. Examining the performance of six heuristic optimization techniques in different forest planning problems. Silva Fennica 39(1): 67-80. https://doi.org/10.14214/sf.396

Pussinen A, Karjalainen T, Mäkipää T, Valsta L, Kellomäki S, 2002. Forest carbon sequestration and harvests in relation to applied rotation lengths under different climate and nitrogen deposition scenarios. For Ecol Manage 158: 103-115. https://doi.org/10.1016/S0378-1127(00)00675-7

Quintero-Méndez M, Jerez-Rico M, 2017. Heuristic forest planning model for optimizing timber production and carbon sequestration in teak plantations. iForest - Biogeosciences and Forestry 10:430-439. https://doi.org/10.3832/ifor1733-009

Quintero MA, Jerez M, Flores J, 2012. Modelo de crecimiento y rendimiento para plantaciones de teca (Tectona grandis L.) usando el enfoque de espacio de estados. Revista Ciencia e Ingeniería 33: 33-42.

Raymer AK, Gobakken T, Solberg B, Hoen HF, Bergseng E, 2009. A forest optimisation model including carbon flows: Application to a forest in Norway. For Ecol Manage 258: 579-589. https://doi.org/10.1016/j.foreco.2009.04.036

Restrepo HI Orrego SA 2015. A comprehensive analysis of teak plantation investment in Colombia. Forest Policy Econom 57: 31-37. https://doi.org/10.1016/j.forpol.2015.05.001

Sreejesh KK, Thomas TP, Rugmini P, Prasanth KM, Kripa PK , 2013. Carbon sequestration potential of teak (Tectona grandis) plantations in Kerala. Res J Recent Sci 2: 167-170.

Takahashi M, Marod D, Paruthai S, Hirai K, 2012. Carbon cycling in teak plantations in comparison with seasonally dry tropical forest in Thailand. In: Forest Ecosystems-More than just trees (Blanco JA, Lo YH, eds.). Intech. Rikeja, Croacia. pp. 209-230. https://doi.org/10.5772/30196

Tewari VP, Álvarez-González JG, García O, 2014. Development of a stand density management diagram for teak forests in southern India. J For Environ Sci 30: 259-266. https://doi.org/10.7747/JFS.2014.30.3.259

Zambrano T, Jerez M, Vincent L, 1995. Modelo preliminar de simulación del crecimiento en área basal para la teca (Tectona grandis L.) en los llanos occidentales de Venezuela. Rev For Ven 39: 40-48.

Published
2019-12-19
How to Cite
Quintero-Méndez, M.-A., & Jerez-Rico, M. (2019). Optimizing thinnings for timber production and carbon sequestration in planted teak (Tectona grandis L.f.) stands. Forest Systems, 28(3), e013. https://doi.org/10.5424/fs/2019283-14649
Section
Research Articles