Susceptibility of Populus x euramericana ‘I-214’ of Spanish origin to xylophagous attacks: durability tests for its possible inclusion in European standard

  • Eleana Spavento Wood Research Laboratory (LIMAD, as per initials in Spanish). School of Agrarian and Forestry Sciences (FCAyF), National University of La Plata (UNLP). http://orcid.org/0000-0002-3810-8952
  • Mónica Murace Wood Research Laboratory (LIMAD, as per initials in Spanish). School of Agrarian and Forestry Sciences (FCAyF), National University of La Plata (UNLP). http://orcid.org/0000-0002-6747-4767
  • Luis Acuña Wood Technology Laboratory, Department of Agricultural and Forestry Engineering, University of Valladolid (UVa). http://orcid.org/0000-0002-9657-8215
  • Silvia Estela Monteoliva Institute of Plant Physiology (INFIVE), FCAyF, UNLP- The National Scientific and Technical Research Council (CONICET). http://orcid.org/0000-0002-8679-7633
  • Mª Teresa Troya 4Woods Protection Laboratory, Department of Forestry Products. Forestry Research Center (CIFOR). National Agrarian and Food Technology Research Institute (INIA). http://orcid.org/0000-0002-0585-1133

Abstract

Aim of study: to assess the natural durability of Populus x euramericana ‘I-214’ against xylophagous fungi and termites, and to carry out a macro-microscopic analysis of the alterations caused by each xylophagous agent in order to get the necessary information for its possible inclusion in existing European standards.

Area of study: A 20-years-old commercial plantation Populus x euramericana‘I-214’ located in Quintanilla de Sollamas (42° 36′ 00″N - 05° 49′ 00″ W), Spanish community of Castile-Leon

Material and methods: material sampling and selection was carried out following EN 350:2017 for commercial sawn timber. Poplar resistance to xylophagous basidiomycete, soft rot fungi and subterranean termites was determined according to CEN/TS 15083-1:2005, CEN/TS 15083-2:2005 and EN 117:2012, respectively. The durability and use classes were estimated according to EN 350:2016 and EN 335:2013, respectively. The anatomical studies were carried out with Optical and Scanning Electron Microscope. Material characterization was carried out by reference to Anagnost (1998) and Schwarze (2007).

Main results: ‘I-214’ poplar wood proved to be “Not-durable” to the action of basidiomycetes, soft rot fungi and termites, use classes 1-2, and showed macro-microscopic evidence of these types of decay.

Research highlights: the information obtained in this study would allow the inclusion of clone I-214 in the standard EN 350 and its explicit classification within it.

Keywords: wood-decay fungi; termites; EN 350.

Abbreviations used: TM: test material; RM: reference material; RH: relative humidity; ML: mass loss; mi: initial dry mass; mf: final dry mass; DC: durability class; OM: Optical Microscope; SEM: Scanning Electron Microscope; TS: transverse section samples; LS: longitudinal section samples; CI: robust confidence intervals; F: fibre; V: vessel; h: hole; t: erosion trough; R: radial parenchyma cell; ep: erosion pitting; Fc: fungal colonization; fr: fracture; c: cavity; b: bore hole; m: mycelium.

Downloads

Download data is not yet available.

References

Anagnost SE, 1998. Light microscopic diagnosis of wood decay. lAWA J 19(2): 141-167. https://doi.org/10.1163/22941932-90001517

Bamber RK, Fukazawa K, 1985. Sapwood and heartwood: A review. Forestry Abstracts 46: 567-580.

Baonza-Merino MV, Gutiérrez Oliva A, 2002. Rendimiento y calidades de chapa en clones de chopo a diferentes alturas del fuste. Investigación Agraria: Sistemas y Recursos Forestales 11(2): 311-323.

Borodowski E, 2017. Situación actual del cultivo y uso de las Salicáceas en Argentina. Jornadas de Salicáceas-V Congreso Internacional de Salicáceas. 20 pp.

Casado M, Acuña L, Basterra LA, Ramón-Cueto G, Vecilla D, 2012. Grading of structural timber of Populus × euramericana clone I-214. Holzforschung 66(5): 633-638. https://doi.org/10.1515/hf-2011-0153

Castro G, Fragnelli G, 2006. New technologies and alternative uses for poplar wood. Boletín Informativo CIDEU 2: 27-36.

Castro G, Paganini G, 2009. New technologies and alternative uses for Poplar wood. Boletín del CIDEU 2: 27-36. ISSN 1885-5237.

CEN/TS 15083-1, 2005. Durability of wood and wood-based products. Determination of the natural durability of solid wood against wood-destroying fungi, test methods-Part 1: Basidiomycetes. European Committee for Standardization, Bruxelles. 19 pp.

CEN/TS 15083-2, 2005. Durability of wood and wood-based products. Determination of the natural durability of solid wood against wood-destroying fungi, test methods-Part 2: Soft-rotting micro-fungi. European Committee for Standardization, Bruxelles. 19 pp.

Del Lungo A, 2017. Situación de Salicáceas en el mundo. Jornadas de Salicáceas-V Congreso Internacional de Salicáceas. 7 pp.

Daniel G, 2016. Fungal Degradation of Wood Cell Walls. In: Secondary Xylem Biology. Part II: Function and Pathogen Resistance of Secondary Xylem, Chapter 8. 131-167 pp. Elsevier Inc Sweden. https://doi.org/10.1016/B978-0-12-802185-9.00008-5

Duarte S, Ricart MG, Nunes L, 2011. Preferências alimentares de Reticulitermes grassei (Clément) (Isoptera: Rhinotermitidae) relativamente a diferentes espécies de madeira. CIMAD. 1º Congresso Ibero-Latino Americano da Madeira na Construção, Coimbra, Portugal. 7 pp.

EN 1995-1-1, 2016. Eurocode 5: Design of timber structures - Part 1-1: General - Common rules and rules for buildings. European Committee for Standardization, Bruxelles. 150 pp.

EN-117, 2012. Wood preservatives - Determination of toxic values against Reticulitermes species (European termites) (Laboratory method). European Committee for Standardization, Bruxelles. 22 pp.

EN 350, 2016. Durability of wood and wood-based products - Testing and classification of the durability to biological agents of wood and wood-based materials. European Committee for Standardization, Bruxelles. 61 pp.

EN 335, 2013. Durability of wood and wood-based products - Use classes: definitions, application to solid wood and wood based panels. European Committee for Standardization, Bruxelles. 14 pp.

ESYRCE, 2018. Encuesta sobre Superficies y Rendimientos de Cultivos. Ministerio de Agricultura, Pesca y Alimentación de España. 178 pp.

Garnica J, 2017. La importancia del chopo en la industria. Jornadas de Salicáceas-V Congreso Internacional de Salicáceas. 22 pp.

Guillaumet A, Acuña Rello L, Piter JC, 2014a. Evaluación del rendimiento de las tablas de Populus deltoides 'Australiano 129/60' y 'Stoneville 67' para la fabricación de vigas laminadas encoladas. IV Congreso Internacional de las Salicáceas en Argentina. La Plata, Argentina. 8 pp.

Guillaumet AA, Filippetti MC, Acuña Rello L, Piter JC, 2014b. Utilización de la madera de álamo en elementos estructurales. XXXVI Jornadas Sudamericanas de Ingeniería Estructural. Montevideo, Uruguay. 15 pp.

Haupt M, Leithoff H, Meier D, Puls J, Richter HG, Faix O, 2003. Heart-wood extractives and natural durability of plantation-grown teak wood (Tectona grandis L.) a case study. European J Wood Wood Products 61(6):473-474. https://doi.org/10.1007/s00107-003-0428-z

Hildebrandt J, Hagemann D, Thrän D, 2017. The contribution of wood-based construction materials for leveraging a low carbon building sector in Europe. Sustainable Cities and Society (Ed Elsevier) 34: 405-418. https://doi.org/10.1016/j.scs.2017.06.013

Hillis WE, 1971. Distribution, Properties and Formation of SomeWood Extractives. Wood Sci Technol 5: 272-289. https://doi.org/10.1007/BF00365060

IRAM 9662:4, 2015. Madera laminada encolada estructural. Clasificación visual de las tablas por resistencia. Instituto Argentino de Racionalización de Materiales. 16 pp.

IRAM 9600, 1998. Preservación de maderas. Maderas preservadas mediante procesos con presión en autoclave. Instituto Argentino de Racionalización de Materiales. 23 pp.

Kirker GT, Blodgett AB, Arango RA, Lebow PK, Clausem CA, 2013. The role of extractives in naturally durable wood species. Internat Biodeterioration Biodegradation (Ed Elsevier) 82.53-58 https://doi.org/10.1016/j.ibiod.2013.03.007

Kollert W, Borodowski ED, 2014. Situación de las Salicáceas en el mundo. Acta Jornadas de Salicáceas-V Congreso Internacional de Salicáceas. 10 pp.

Latorraca J, Dünisch O, Koch G, 2011. Chemical composition and natural durability of juvenile and mature heartwood of Robinia pseudoacacia L. Anais da Academia Brasileira de Ciências 83 (3): 1059-1068. ISSN online 1678-2690. https://doi.org/10.1590/S0001-37652011005000016

Martinuzzi F, 2013. Fichas Técnicas de Madera. INTI Maderas y Muebles. Revista CEMA (114): 64.

Matyás C, Pezslen I, 1994. Effect of age on selected wood quality traits of poplar clones. Silvae Genetica 46 (2-3): 64-72.

Murace M, Spavento E, Keil GD, Saparrat M, 2010. Pudrición castaña: efectos sobre las propiedades de resistencia mecánica de la madera. Quebracho-Revista de Ciencias Forestales 18(1, 2): 37-46.

Murace M, Spavento E, Rivas P, Saparrat M, Keil G, 2014. Comportamiento de Pinus ponderosa Dougl. ex. Laws. expuesto al hongo de pudrición castaña Gloeophyllum sepiarium (Wulf.: Fr.) P. Karst. Quebracho Revista Ciencias Forestales 22(1, 2): 114-124.

R Development Core Team, 2018. R: a language and environmemt for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www. R-project.org

Rahayu I, Denaud L, Marchal R, Darmawan W, 2015. Ten new poplar cultivars provide laminated veneer lumber for structural application. Annals of Forest Science (Ed Springer). 14 pp. https://doi.org/10.1007/s13595-014-0422-0

Ramage M, Burridge H, Busse-Wicher M, Fereday G, Reynolds T, Shah D, Wu G, Yi L, Fleming P, Densley-Tingley D, et al., 2017. The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews (Ed Elsevier) 68: part 1: 333-359. https://doi.org/10.1016/j.rser.2016.09.107

Schmidt O, 2006. Wood and tree decay. Biology, Damage, Protection and Use. Springer Verlag Berlin Heidelberg. 329 pp.

Schwarse F, 2007. Review: Wood decay under the microscope. Fungal biology reviews 2(1): 133-170. https://doi.org/10.1016/j.fbr.2007.09.001

Schwarze F, Engels J, Mattheck C, 2000. Fungal strategies of wood decay in trees. Springer Verlag. 184 pp. https://doi.org/10.1007/978-3-642-57302-6

Taylor AM, Gartner BL, Morrell JJ, 2002. Wood Fiber Sci 34(4): 587-611.

van Acker J, Stevens M, Carey J, Sierra-Alvares R, Militz H, Le Bayon I, Kleist G, Peek RD, 2003. Biological durability of wood in relation to end-use. Holz Roh Werkstoff (Ed Springer Verlag) 61: 35-45. https://doi.org/10.1007/s00107-002-0351-8

Winandy J, Morrell J, 1993. Relationship between incipient decay, strength, and chemical composition of Douglas-Fir heartwood. Wood Fiber Sci 25(3): 278-288.

Wilcox W, 1978. Review of literature on the effects of early stages of decay on wood strength. Wood Fiber 9(4): 252-257.

Zabel RA, Morrell JJ, 1992. Wood microbiology. Decay and its prevention. Academics Press Inc 476 pp.

Published
2019-09-20
How to Cite
Spavento, E., Murace, M., Acuña, L., Monteoliva, S. E., & Troya, M. T. (2019). Susceptibility of Populus x euramericana ‘I-214’ of Spanish origin to xylophagous attacks: durability tests for its possible inclusion in European standard. Forest Systems, 28(2), e008. https://doi.org/10.5424/fs/2019282-14660
Section
Research Articles