Drought-induced growth decline of Aleppo and maritime pine forests in south-eastern Spain.

Raúl Sánchez-Salguero, Rafael Maria Navarro, Jesús Juio Camarero, Ángel Fernández-Cancio

Abstract


Climate warming may enhance the negative effects of droughts on radial growth in areas with severe water deficit, such as Mediterranean mountains under semi-arid conditions. The impacts of drought on growth decline of Mediterranean pines have not been evaluated considering species with different vulnerability and areas with contrasting climates. Dendrochronological methods were used to assess the responses of basal area increment to drought in Pinus pinaster and P. halepensis plantations. We compared growth trends of trees with different defoliation degree in two sites in south-eastern Spain (Sierra de los Filabres and Sierra de Baza) with contrasting climatic conditions. In the more xeric area (Filabres) both pine species showed a sharp growth reduction in response to extreme droughts such as those observed in 1994-1995, 1999 and 2005. The radial growth of both species was enhanced by May and June precipitation of the year of tree-ring formation. P. pinaster showed higher defoliation in the xeric area (Filabres) than in the more mesic area (Baza) but needle loss was not linked to an abrupt growth reduction. Contrastingly, divergent radial growth patterns between trees showing high and low defoliation degrees were found for P. halepensis in the more xeric area, where a negative relationship between recent basal area increment and defoliation was found. Pine plantations in Mediterranean mountains under semi-arid conditions are highly vulnerable to warming-induced droughts. Such marginal stands constitute valuable monitoring systems to assess the negative impacts of drought on tree growth, and to test if management strategies as thinning can mitigate the negative impacts of climate warming on similar drought-stressed forests.

Keywords


basal-area increment; climate warming; dendroecology; drought index; Mediterranean forests; Pinus; thinning; tree-ring width.

Full Text:

PDF

References


Alia R., Martín S., 2002. Technical guidelines for genetic conservation and use for maritime pine (Pinus pinaster). EUFORGEN, Rome, Italy. 6 pp.

Allen C.D., Breshears D.D., 1998. Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proceedings of the National Academy of Sciences of the United States of America 95. pp. 14839-14842. http://dx.doi.org/10.1073/pnas.95.25.14839 PMid:9843976 PMCid:24536

Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., Mcdowell N., Vennetier M., Kitzberger T., Rigling A., Breshears D.D., Hogg E.H., Gonzalez P., Fensham R., Zhang Z., Castro J., Demidova N., Lim J.-H., Allard G., Running S.W., Semerci A., Cobb N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259, 660-684. http://dx.doi.org/10.1016/j.foreco.2009.09.001

Andreu L., Gutiérrez E., Macías M., Ribas M., Bosch O., Camarero J.J., 2007. Climate increases regional tree-growth variability in Iberian pine forests. Global Change Biology 13, 804-815.

Bigler C., Bräker O.U., Bugmann H., Dobbertin M., Rigling A., 2006. Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9, 330-343. http://dx.doi.org/10.1007/s10021-005-0126-2

Bigler C., Bugmann H., 2004. Predicting the time of tree death using dendrochronological data. Ecological Applications 14, 902-914. http://dx.doi.org/10.1890/03-5011

Biondi F., Waikul K., 2004. DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers and Geosciences 30, 303-311. http://dx.doi.org/10.1016/j.cageo.2003.11.004

Bonan G.B., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444-1449. http://dx.doi.org/10.1126/science.1155121 PMid:18556546

Bogino S., Bravo F., 2008. Growth response of Pinus pinaster Ait. to climatic variables in central Spanish forest. Annals of Forest Sciences 65, 506-518. http://dx.doi.org/10.1051/forest:2008025

Camarero J.J., Lloret F., Corcuera L., Peñuelas J., Gil-Pelegrín E., 2004. Cambio global y decaimiento del bosque. En: Ecología del bosque mediterráneo en un mundo cambiante (Valladares F., ed). Ministerio de Medio Ambiente, Madrid. pp. 397-423.

Camarero J.J., Olano J.M., Parras A., 2010. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytologist 185, 471-480. http://dx.doi.org/10.1111/j.1469-8137.2009.03073.x PMid:19895415

Cook E.R., 1985. A time series analysis approach to treering standardization. PhD thesis. University of Arizona, Tucson.

De Luis M., Grič Ar J., Čaufar K., Raventós J., 2007. Seasonal dynamics of wood formation in Pinus halepensis from dry and semi-arid ecosystems in Spain. IAWA Journal 28, 389-404.

De Luis M., González-Hidalgo J.C., Longares L.A., Štepánek P., 2008. Seasonal precipitation trends in the Mediterranean Iberian Peninsula in second half of 20th century. International Journal of Climatology 29, 1312-1323. http://dx.doi.org/10.1002/joc.1778

De Luis M., Novak K., Čufar K., Raventós J., 2009. Size mediated climate-growth relationships in Pinus halepensis and Pinus pinea. Trees-Structure and Function 23, 257-265.

Dobbertin M., 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. European Journal of Forest Research 124, 319-333. http://dx.doi.org/10.1007/s10342-005-0085-3

Fady B., Semerci H., Vendramin G.G., 2003. Technical guidelines for genetic conservation and use for Aleppo pine (Pinus halepensis) and Brutia pine (Pinus brutia). EUFORGEN, Rome, Italy. 6 pp. PMid:14523524

Fernández Cancio A., Manrique Menéndez E., 1997. Nueva metodología para la reconstrucción dendroclimática y aplicaciones más importantes. INIA-EUITF, Madrid.

Fernández Cancio A., Navarro Cerrillo R.M., Sánchez Salguero R., Fernández Fernández R., Manrique Menéndez E., 2010. Viabilidad fitoclimática de las repoblaciones de pino silvestre (Pinus sylvestis L.) en la Sierra de los Filabres (Almería). Ecosistemas. [En evaluación].

Ferretti M. (ed). 1994. Especies forestales mediterráneas. Guía para la evaluacion de las copas. CEE UN/ECE, Bruselas, Ginebra.

Fritts H.C., 1976. Tree rings and climate. Academic Press, New York. PMid:785769 PMCid:2441378

García La Torre J., García La Torre J., 2007. Almería hecha a mano. Una historia ecológica. Fundación Cajamar, Almería.

Holmes R.L., 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43, 68-78.

Holmes R.L., 2001. Dendrochronology program library. Laboratory of Tree Ring Research, University of Arizona, Tucson, USA.

IPCC, 2007. Climate Change 2007: the physical science basis. Cambridge University Press, Cambridge, UK. 996 pp.

Jump A.S., Hunt J.M., Peñuelas J., 2006. Rapid climate change related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology 12, 2163-2174. http://dx.doi.org/10.1111/j.1365-2486.2006.01250.x

Linares J.C., Camarero J.J., Carreira J.A., 2009. Interacting effects of changes in climate and forest cover on mortality and growth of the southernmost European fir forests. Global Ecology and Biogeography 18, 485-497. http://dx.doi.org/10.1111/j.1466-8238.2009.00465.x

Linares J.C., Tíscar P.A., 2010. Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Tree Physiology. doi: 10.1093/treephys/tpq052. http://dx.doi.org/10.1093/treephys/tpq052

Lloret F., Siscart D., 1995. Los efectos demográficos de la sequía en poblaciones de encina. Cuadernos de la Sociedad Española de Ciencias Forestales 2, 77-81.

Macías M., Andreu L., Bosch O., Camarero J.J., Gutiérrez E., 2006. Increasing aridity is enhancing silver fir (Abies alba Mill.) water stress in its south-western distribution limit. Climatic Change 79, 289-313. http://dx.doi.org/10.1007/s10584-006-9071-0

Manrique Menéndez E., Fernández-Cancio A., 2000. Extreme climatic events in dendroclimatic reconstructions from Spain. Climatic Change 44, 123-138.

Martínez-Vilalta J., López B.C., Adell N., Badiella L., Ninyerola M., 2008. Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Global Change Biology 14, 2868-2881. http://dx.doi.org/10.1111/j.1365-2486.2008.01685.x

Martínez-Vilalta J., Piñol J., 2002. Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. Forest Ecology and Management 161, 247-256. http://dx.doi.org/10.1016/S0378-1127(01)00495-9

Martínez-Vilalta J., Sala A., Piñol J., 2004. The hydraulic architecture of Pinaceae. Plant Ecology 171, 3-13. http://dx.doi.org/10.1023/B:VEGE.0000029378.87169.b1

Mcdowell N., Pockman W.T., Allen C.D., Breshears D.D., Cobb N., Kolb T., Plaut J., Sperry J., West A., Williams D.G., Yepez E.A., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist 178,719-739. http://dx.doi.org/10.1111/j.1469-8137.2008.02436.x PMid:18422905

Mitchell T.D., Hulme M., New M., 2001. Climate data for political areas. Area 34, 109-112.

Montero G., 1997. Breve descripción del proceso repoblador en España (1940-1995). Legno Celulosa Carta 4, 35-42.

Navarro-Cerrillo R.M., Varo M.A., Lanjeri S., Hernández Clemente R., 2007. Cartografía de defoliación en los pinares de pino silvestre (Pinus sylvestris L.) y pino salgareño (Pinus nigra Arn.) en la Sierra de los Filabres. Ecosistemas 16, 163-171.

Pedersen B.S., 1999. The mortality of Midwestern overstory oaks as a bioindicator of environmental stress. Ecological Applications 9, 1017-1027. http://dx.doi.org/10.1890/1051-0761(1999)009[1017:TMOMOO]2.0.CO;2

Peñuelas J., Lloret F., Montoya R., 2001. Severe drought effects on Mediterranean woody flora. Forest Science 47, 214-218.

Peñuelas J., Hunt J.M., Ogaya R., Jump A.S., 2008. Twentieth century changes of tree-ring ä13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Global Change Biology 14, 1076-1088. http://dx.doi.org/10.1111/j.1365-2486.2008.01563.x

Rebetez M., Dobbertin M., 2004. Climate change may already threaten Scots pine stands in the Swiss Alps. Theoretical and Applied Climatology 79, 1-9. http://dx.doi.org/10.1007/s00704-004-0058-3

Richardson D.M., 1998. Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge.

Richter K., Eckstein D., 1991. The dendrochronological signal of pine trees (Pinus spp.) in Spain. Tree-Ring Bulletin 51, 1-13.

Ruiz De La Torre J., 2006 Flora mayor. Organismo de Parques Nacionales, Madrid. PMid:16612022

Sánchez-Salguero R., Navarro-Cerrillo R.M., Camarero Martínez J.J., Fernández Cancio A., Lara Delgado J., 2009. Causas climáticas del decaimiento selectivo de pinares en el sureste de España. Actas del V Congreso Forestal Español, Ávila.

Suárez M.L., Ghermandi L., Kitzberger T., 2004. Factors predisposing episodic drought-induced tree mortality in Nothofagus-site, climatic sensitivity and growth trends. Journal of Ecology 92, 954-966. http://dx.doi.org/10.1111/j.1365-2745.2004.00941.x

Tardif J., Camarero J. J., Ribas M., Gutiérrez E., 2003. Spatiotemporal variability in tree ring growth in the Central Pyrenees: climatic and site influences. Ecological Monographs 73, 241-257. http://dx.doi.org/10.1890/0012-9615(2003)073[0241:SVITGI]2.0.CO;2

Thornthwaite C.W., 1948. An approach toward a rational classification of climate. Geogr Rev 38, 55-94. http://dx.doi.org/10.2307/210739

Van Mantgem P.J., Stephenson N.L., 2007. Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecology Letters 10, 909-916. http://dx.doi.org/10.1111/j.1461-0248.2007.01080.x PMid:17845291

Vieira J., Campelo F., Nabais C., 2009 Age-dependent responses of tree-ring growth and intra-annual density fluctuations. Trees-Structure and Function 23, 257-265. http://dx.doi.org/10.1007/s00468-008-0273-0

Yamaguchi D.K., 1991. A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research 21, 414-416. http://dx.doi.org/10.1139/x91-053




DOI: 10.5424/fs/2010193-9131

Webpage: www.inia.es/Forestsystems