Norway spruce responses to drought forcing in areas affected by forest decline

  • Petr Čermák Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic http://orcid.org/0000-0003-4550-4264
  • Tomáš Kolář Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic http://orcid.org/0000-0002-6461-7582
  • Tomáš Žid Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic http://orcid.org/0000-0002-8467-4138
  • Miroslav Trnka Global Change Research Centre Academy of Sciences of the Czech Republic & Institute of Agriculture Systems and Bioclimatology Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic http://orcid.org/0000-0003-4727-8379
  • Michal Rybníček Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic http://orcid.org/0000-0003-1299-8923

Abstract

Aim of study: To assess the crown condition and radial growth of Norway spruce in plots with an increasing frequency and strength of drought during the last decades.

Area of the study: Northern Moravia, Czech Republic.

Materials and methods: Crown condition assessment and dendrochronology analysis were used.

Main results: Tree-ring width (TRW) was significantly influenced by previous autumn and current summer climate. The temporal variability of the growth-climate relationship shows that the impact of water sufficiency (precipitation, relative soil water content, drought index) markedly increased mainly during the 2000s and the 2010s. Most climate-growth relationships were significant only in the last two or three decades. The observed crown conditions and their relationships with TRW also indicate stress intensification during the same period. Our results suggest that water availability was the main factor affecting radial growth and the occurrence of negative pointer years and was probably also the factor triggering the decline.

Research highlights: In these current site and climate conditions, the silviculture of Norway spruce is extremely risky in the study area. Our results have also shown that the observed climate change is too dynamic for long-term forest plans, especially with regard to recommended forest species composition.

Keywords: defoliation; Picea abies; tree-ring width; precipitation; PDSI; available soil water.

 

Downloads

Download data is not yet available.

References

Aakala T, Kuuluvainen T, 2011. Summer droughts depress radial growth of Picea abies in pristine taiga of the Arkhangelsk province, northwestern Russia. Dendrochronologia 29: 67-75. https://doi.org/10.1016/j.dendro.2010.07.001

Affolter P, Büntgen U, Esper J, Rigling A, Weber P, Luterbacher J, Frank D, 2010. Inner Alpine conifer response to 20th century drought swings. Eur J For Res 129: 289-298. https://doi.org/10.1007/s10342-009-0327-x

Allen CD, Macalady AK, Chenchouni H, Bachelet D, Mcdowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, et al., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259(4): 660-684. https://doi.org/10.1016/j.foreco.2009.09.001

Andreassen K, Solberg S, Tveito OE, Lystad SL, 2006. Regional differences in climatic responses of Norway spruce (Picea abies L. Karst) growth in Norway. Forest Ecol Manag 222: 211-221. https://doi.org/10.1016/j.foreco.2005.10.029

Baillie MGL, Pilcher JR, 1973. A simple crossdating program for tree-ring research. Tree-Ring Bull 33:7-14.

Biondi F, Waikul K, 2004. DendroClim2002: AC++programfor statistical calibration of climate signals in tree ring chronologies. Comput Geosci 30: 303-311. https://doi.org/10.1016/j.cageo.2003.11.004

Børja I, Svĕtlík J, Nadezhdin V, Čermák J, Rosner S, Nadezhdina N, 2016. Sap flux - a real time assessment of health status in Norway spruce. Scand J For Res 31(5): 450-457. https://doi.org/10.1080/02827581.2015.1130851

Bošeľa M, Sedmák R, MaruŠák R, Sedmáková D, Petráš R, Barna M, 2014. Evaluating similarity of radial increments around tree stem circumference of European beech and Norway spruce from Central Europe. Geochronometria 41(2): 136-146. https://doi.org/10.2478/s13386-013-0152-3

Bouriaud O, Popa I, 2009. Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains. Trees 23: 95-106. https://doi.org/10.1007/s00468-008-0258-z

Brázdil R, Trnka M, Mikšovský J, Řezníčková L, Dobrovolný P, 2014. Spring‐summer droughts in the Czech Land in 1805-2012 and their forcings. Int J Climatol 35: 1405-1421. https://doi.org/10.1002/joc.4065

Camarero JJ, Gazol A, Sangüesa-BarredaG, Cantero A, Sánchez-Salguero R, Sánchez-Miranda A, Granda E, Serra-Maluquer X, Ibáñez R, 2018. Forest Growth Responses to Drought at Short- and Long-Term Scales in Spain: Squeezing the Stress Memory from Tree Rings. Front Ecol Evol 6, 9. https://doi.org/10.3389/fevo.2018.00009

Čermák P, Rybníček M, Žid T, Andreasssen K, Børja I, Kolář T, 2017. Impact of climate change on growth dynamics of Norway spruce in south-eastern Norway. Silva Fenn 51(2). https://doi.org/10.14214/sf.1781

Cienciala E, Tumajer J, Zatloukal V, Beranová J, Holá Š, Hůnová I, Russ R, 2017. Recent spruce decline with biotic pathogen infestation as a result of interacting climate, deposition and soil variables. Eur J For Res 136: 307-317. https://doi.org/10.1007/s10342-017-1032-9

Cook ER, Krusic PJ, 2005. ARSTAN v. 41d: a Tree-ring Standardization ProgramBased on Detrending and Autoregressive Time Series Modeling, with Interactive Graphics. New York: Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades.

Cook ER, Peters K, 1981. The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41: 45-53.

Cook ER, Peters K, 1997. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7: 361-370. https://doi.org/10.1177/095968369700700314

Cudlín P, Novotný R, Moravec I, Chmelíková E, 2001. Retrospective evaluation of the response of montane forest ecosystems to multiple stress. Ekológia 20: 108-124.

Dobbertin M, 2006. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. Eur J For Res 124(4): 319-333. https://doi.org/10.1007/s10342-005-0085-3

Eckstein D, Bauch J, 1969. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Cent bl gesamte Forstwes 88: 230-250. https://doi.org/10.1007/BF02741777

Eichhorn J, Roskams P, Ferretti M, Mues V, Szepesi A, Durrant D, 2010. Visual Assessment of Crown Condition and Damaging Agents. Manual Part IV. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE ICP Forests Programme Co-ordinating Centre, Hamburg. [cited 2017 November 20] Available from: http://www.icp-forests.org/Manual.htm

Ferretti M., Fischer R. (eds.) 2013. Forest Monitoring. Methods for terrestrial investigations in Europe with an overview of North America and Asia. Elsevier Ltd., Oxford. 507 pp.

Franklin JF, Shugart HH, Harmon ME, 1987. Tree death as an ecological process. Bioscience 27: 550-556. https://doi.org/10.2307/1310665

Friedrichs DA, Trouet V, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J, 2009. Species-specific climate sensitivity of tree growth in central-west Germany. Trees - Struct Funct 23: 729-739. https://doi.org/10.1007/s00468-009-0315-2

Fritts HC (1976) Tree rings and climate. Academic Press, London. 582 pp.

Gazol A, Camarero JJ, Anderegg, WRL, Vicente-Serrano SM, 2017. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26(2): 166-176. https://doi.org/10.1111/geb.12526

Greenwood S, Ruiz-Benito P, Martínez-Vilalta J, Lioret F, Kitzberge, T, Alle, CD, Fensham R, Laughlin DC, Kattge J, Bönisch G, et al. 2017. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol Lett 20(4): 539-553. https://doi.org/10.1111/ele.12748

Gričar J, Prislan P, Gryc V, Vavrčík H, de Luis M, Čufar K, 2014. Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Tree Physiol 34(8): 869-881. https://doi.org/10.1093/treephys/tpu026

Grissino-Mayer HD, 2001. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Res 57 (2): 205-221.

Grodzki W, 2007. Spatio-temporal patterns of the Norway spruce decline in the Beskid Śląski and Żywiecki (Western Carpathians) in southern Poland. J For Sci 53(Special Issue): 38-44. https://doi.org/10.17221/2155-JFS

Grodzki W, 2010. The decline of Norway spruce Picea abies (L.) Karst. stands in Beskid Śląski and Źywiecki: theoretical concept and reality. Beskydy 3: 19-26.

Hartl-Meier C, Zang C, Büntgen U, Esper J, Rothe A, Göttlein A, Dirnböck T, Treydte K, 2014. Uniform climate sensitivity in tree-ring stable isotopes across species and sites in a mid-latitude temperate forest. Tree Physiol 35, 4-15 https://doi.org/10.1093/treephys/tpu096

Hentschel R, Rosner S, Kayler ZE, Andreassen K, Borja I, Solberg S, Tveito OE, Priesack E, Gessler A, 2014. Norway spruce physiological and anatomical predisposition to dieback. For Ecol Manag 322: 27-36. https://doi.org/10.1016/j.foreco.2014.03.007

Hlavinka P, Trnka M, Balek J, 2011. Development and evaluation of the SoilClimmodel for water balance and soil climate estimates. Agric. Water Manag 98(8): 1249-1261. https://doi.org/10.1016/j.agwat.2011.03.011

Hollstein E, 1980. Mitteleuropäische Eichenchronologie. Triererdendrochronologische Forschungen zur Archäologie und Kunstgeschichte. Trierer Grabungen und Forschungen. Mainz am Rhein. 274 pp.

Holuša J, Lubojacký J, Čurn V, Tonka T, Lukášová K, Horák J, 2018. Combined effects of drought stress and Armillaria infection on tree mortality in Norway spruce plantations. For Ecol Manag 427(1): 434-445. https://doi.org/10.1016/j.foreco.2018.01.031

Jankovský L, Cudlín P, Moravec I, 2003. Root decays as a potential predisposition factor of a bark beetle disaster in the Šumava Mts. J For Sci 49(3): 125-132. https://doi.org/10.17221/4687-JFS

Kolář T, Čermák P, Trnka M, Žid T, Rybníček M, 2017. Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agric For Meteorol 239: 24-33. https://doi.org/10.1016/j.agrformet.2017.02.028

Koprowski M, Zielski A, 2006. Dendrochronology of Norway spruce (Picea abies (L.) Karst.) from two range centres in lowland Poland. Trees 20: 383-390. https://doi.org/10.1007/s00468-006-0051-9

Lesinski J, Landmann G, 1985. Crown and branch malformation in confers related to forest decline. In: Cape, J.N., et al. (eds.) Scientific basis of forest decline symptomatology, Brussels: Commision of European Communities, Air Pollution Research Report 15: 95-105.

Leuschner C, Ellenberg, H, 2017. Ecology of Central European Forests. Vegetation Ecology of Central Europe, Volume I. Springer International Publishing. 1st edition. 972 pp. https://doi.org/10.1007/978-3-319-43042-3

Manion PD, 1991. Tree disease concepts. Prentice-Hall Inc, Engelwood Clifts, N.J., 402 pp.

Manion PD, Lachance D (eds.), 1992. Forest decline concepts. APS Press, St. Paul, MN, 249 pp.

Miyamoto Y, Griesbauer HP, Green DS, 2010. Growth responses of tree coexisting conifer species to climate wide geographic and climate ranges in Yukon and British Columbia. For Ecol Manag 259: 514-523. https://doi.org/10.1016/j.foreco.2009.11.008

Modrzyński J, 2007. Outline of Ecology in Tjoelker, MG, Borytański A, Bugała W, 2007. Biology and Ecology of Norway Spruce. Springer, Dordreeht. 195-198. https://doi.org/10.1007/978-1-4020-4841-8_11

MZe ČR, VÚLHM, 2004. Monitoring stavu lesa v České republice: 1984-2003 [Forest condition monitoring in the Czech Republic: ICP Forests] MZe ČR, Praha and VÚLHM, Jíloviště-Strnady. 431 pp.

MZe ČR, 2016. Zpráva o stavu lesa a lesního hospodářství České republiky v roce 2015. [Information on Forests and Forestry in the Czech Republic by 2015] MZe ČR, Praha. 134 pp.

Novotný R, Lachmanová Z, Šrámek V, Vortelová L, 2008. Air pollution load and stand nutrition in the Forest District Jablunkov, part Nýdek. J For Sci 54(2): 49-54. https://doi.org/10.17221/797-JFS

Palmer WC, 1965. Meteorological Drought. Research Paper, US Weather Bureau, Washington, DC, 45: 58.

Quinn GP, Keough MJ. 2002. Experimental Designs and Data Analysis for Biologists. Cambridge University Press, Cambridge. 537 pp. https://doi.org/10.1017/CBO9780511806384

Rosner S, Svĕtlík J, Andreassen K, Børja I, Dalsgaard L, Evans R, Luss S., Tveito OE, Solberg S, 2016. Novel hydraulic vulnerability proxies for boreal conifer species reveal that opportunists may have lower survival prospects under extreme climatic events. Front Plant Sci 7 (831). https://doi.org/10.3389/fpls.2016.00831

Rybníček M, Čermák P, Hadaš P, Kolář T, Žid, 2012a. Dendrochronological analysis and habitual stress diagnostic assessment of Norway spruce (Picea abies) stands in the Drahany Highlands. Wood Res 57(2): 189-206.

Rybníček M, Čermák P, Kolář T, Přemyslovská E, Žid T, 2009. Influence of temperatures and precipitation on radial increment of Orlické hory Mts. spruce stands at altitudes over 800 m a.s.l. J For Sci 55(6): 257-263. https://doi.org/10.17221/90/2008-JFS

Rybníček M, Čermák P, Kolář T, Žid T, 2012b. Growth responses of Norway spruce (Picea abies) to the climate in the south-eastern part of the Českomoravská Upland (Czech Republic). Geochronometria 39(2): 149-157. https://doi.org/10.2478/s13386-012-0003-7

Rybníček M, Čermák P, Žid T, Kolář T, 2010. Radial growth and health conditions of Norway spruce (Picea abies (L.) Karst.) stands in relation to climate (Silesian Beskids, Czech Republic). Geochronometria 36: 9-16. https://doi.org/10.2478/v10003-010-0017-1

Rybníček M, Čermák P, Žid T, Kolář T, 2012c. Growth responses of Picea abies to climate in the central part of the Českomoravská Upland (Czech Republic). Dendrobiology 68: 21-30. https://doi.org/10.2478/s13386-012-0003-7

Rybníček M, Gryc V, Vavrčík H, Horáček P, 2007. Annual ring analysis of the root system of Scots pine. Wood Res 52 (3): 1-14.

Sinclair WA, 1967. Decline of hardwoods: possible causes. Proceedings of the International Shade Tree Conference 43: 17-32.

Šrámek V, Novotný R, Fadrhonsová V, 2015. Decay of Norway spruce stands and quality of forest soil in the region of northern Moravia and Silesia. ZLV 60(2): 147-153.

Šrámek V, Vejpustková M, Novotný R, Hellebrandová K, 2008. Yellowing of Norway spruce stands in the Silesian Beskids - damage extent and dynamics. J For Sc. 54(2): 55-63. https://doi.org/10.17221/795-JFS

Štěpánek P, Zahradníček P, Skalák P, 2009. Data quality control and homogenization of air temperature and precipitation series in the area of the Czech Republic in the period 1961-2007. ASR 3: 23-26. https://doi.org/10.5194/asr-3-23-2009

Štěpánek P, Zahradníček P, Huth R, 2011. Interpolation techniques used for data quality control and calculation of technical series: An example of Central European daily time series. Idöjárás 115 (1-2): 87-98.

Sturrock RN, Frankel SJ, Brown AW, Hennon PE, Kliejunas J, Lewis KJ, Worrall JJ, Woods AJ, 2011. Climate change and forest diseases. Plant Pathol 60: 133-149. https://doi.org/10.1111/j.1365-3059.2010.02406.x

Temperli C, Bugmann H, Elkin C, 2012. Adaptive management for competing forest goods and services under climate change. Ecol Appl 22(8): 2065-2077. https://doi.org/10.1890/12-0210.1

Trumbore S, Brando P, Hartmann, H, 2015. Forest health and global change. Science 349(6250): 814-818. https://doi.org/10.1126/science.aac6759

Vakula J, Zúbrik M, Galko J, Gubka A, Kunca A, Nikolov C, Bošela M, 2015. Influence of selected factors on bark beetle outbreak dynamics in the Western Carpathians. Cent Eur For J 61: 149-156. https://doi.org/10.1515/forj-2015-0023

van der Maaten-Theunissen M, van der Maaten E, Kahle H-P, 2013. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann For Sci 70(2):185-193. https://doi.org/10.1007/s13595-012-0241-0

Viewegh J, Kusbach A, Mikeska M, 2003. Czech forest ecosystem classification. J For Sci 49: 74-82. https://doi.org/10.17221/4682-JFS

Wigley TML, Briffa KR, Jones PD, 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl Meteorol Climatol 23: 201-213. https://journals.ametsoc.org/doi/abs/10.1175/1520-0450%281984%29023%3C0201%3AOTAVOC%3E2.0.CO%3B2

Xu Z, Röhrig E, Fölster H, 1997. Reaction of root systems of grand fir (Abies grandis Lindl.) and Norway spruce (Picea abies Karst.) to seasonal waterlogging. For Ecol Manag 93: 9-19. https://doi.org/10.1016/S0378-1127(96)03951-5

Zahradníček P, Trnka M, Brázdil R, Možný M, Štěpánek P, 2013. Extreme drought episode from August 2011 to May 2012 in the Czech Lands. EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, p.13137.

Zahradníček P, Trnka M, Štěpánek P., Semeradova D, Farda A, 2014. Drought periods in 2014 In: Rožnovský, J., Litschmann, T., (eds): Mendel a bioklimatologie. Brno, 3.-5. 9.

Published
2019-12-19
How to Cite
Čermák, P., Kolář, T., Žid, T., Trnka, M., & Rybníček, M. (2019). Norway spruce responses to drought forcing in areas affected by forest decline. Forest Systems, 28(3), e016. https://doi.org/10.5424/fs/2019283-14868
Section
Research Articles