Modelling the probability of lightning-induced forest fire occurrence in the province of León (NW Spain)

Fernando Castedo-Dorado, José Ramón Rodríguez-Pérez, José Luis Marcos-Menéndez, Mª Flor Álvarez-Taboada


Spatial relationships between lightning-induced forest fires and topography, vegetation, climate and lightning characteristics were analyzed in the province of León (NW Spain). The study was based on reported lightning-induced forest fires in the period 2002-2007. A statistical model based on logistic regression was developed to estimate the probability of occurrence of a lightning-induced fire in a 3 x 3 km grid. The importance of accurate location of the ignition point was also investigated in order to evaluate the sensitivity of the model developed to uncertainty of the location. The model developed with accurate ignition point data showed a better predictive ability than the model constructed with all the ignition points available. The former model was therefore selected for long-term prediction of the occurrence of lightning-induced fires in the province. According to this model, the probability of a forest stand being affected by lightning-induced fire increased with decreasing altitude, and when there was a high proportion of coniferous species in the stand, a high percentage of lightning strikes in forest areas and a high number of dry storm days in the area. Although the model has not been validated, the results can be considered spatially robust because it shows good classification ability and the predicted spatial probability distribution is consistent with the observed historical fire records. The model will be useful in the spatially explicit assessment of fire risk, the planning and coordination of regional efforts to identify areas at greatest risk, and in designing long-term wildfire management strategies.


Incendios forestales causados por rayo; rayos; regresión logística; probabilidad de ignición; sistemas de información geográfica

Full Text:



Aguado I., Chuvieco E., Borén R., Nieto H., 2007. Estimation of dead fuel moisture content from meteorological data in Mediterranean areas. Applications in fire danger assessment. Int J Wild Fire 16, 390-397.

Álvarez-Lamata E., 2001. Factor de tormentas. Proc V Simposio Nacional de Predicción. Sección C: Técnicas y herramientas de análisis, diagnosis y predicción. Madrid, Spain. Nov. 20-23. 6 pp. [In Spanish].

Álvarez-Lamata E., 2005. Los incendios forestales y las condiciones meteorológicas en Aragón. Proc 4º Congreso Forestal Español, Zaragoza, Spain. Sept. pp. 26-30. 7 pp. [In Spanish].

Amatulli G., Pérez-Cabello F., De La Riva Fernández J., 2007. Mapping lightning/human-caused fires occurrence under ignition point location uncertainty. Ecol Model 200, 321-333.

Anderson K., 2002. A model to predict lightning-caused fire occurrences. Int J Wild Fire 11, 163-172.

Bond W.J., Van Wilgen B.W., 1996. Why and how do ecosystems burn? In: Fire and plants. Ed Chapman & Hall, London. pp. 17-33.

Carrera-Hernández J.J., GASKIN S.J. 2007. Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico. J. Hydrol 336, 231-249.

Chuvieco E., Aguado I., Yebra M., Nieto H., Salas J., Martín M.P., Vilar L., Martínez J., Martín S., Ibarra P., De La Riva J., Baeza M.J., Rodríguez F., Molina J.R., Herrera M.A., Zamora R., 2010. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221, 46-58.

Copas J.B., Corbett P., 2002. Overestimation of the receiver operating characteristic curve for logistic regression. Biometrika 89, 315-331.

Conedera M., Cesti G., Pezzatti G.B., Zumbrunnen T., Spinedi F., 2006. Lightning-induced fires in the Alpine region: an increasing problem. Proc 5th International conference on forest fire research. Coimbra, Portugal. Nov. 27-30. PMid:18943666 PMCid:2870571

Cox D.R., Snell E.J., 1989. Analysis of binary data, 2nd ed. Chapman and Hall, London.

Díaz-Ávalos C., Peterson D.L., Alvarado E., Ferguson S.A., Besag J.E., 2001. Space-time modelling of lightning-caused ignitions in the Blue Mountains, Oregon. Can J For Res 31, 1579-1593.

Dissing D., Verbyla D.L., 2003. Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation. Can J For Res 33, 770-782.

Evett R.R., Mohrle C.R., Hall B.L., Brown T.J., Stephens S.L., 2008. The effect of monsoonal atmospheric moisture on lightning fire ignitions in southwestern North America. Agr For Meteo 148, 1478-1487.

Finney M.A., 2004. FARSITE: Fire Area Simulator-model development and evaluation. USDA Forest Service Res. Pap. RMRS-RP-4, Ogden, UT. 47 pp.

Flannigan M.D., Wotton B.M., 1991. Lightningignited forest fires in Northwestern Ontario. Can J For Res 21, 277-287.

González J.R., Palahí M., Trasobares A., Pukkala T., 2006. A fire probability model for forest stands in Catalonia (north-east Spain). Ann For Sci 63, 169-176.

Granstrom A., 1993. Spatial and temporal variation in lightning ignitions in Sweden. J Veg Sci 4, 737-744.

Hall B.L., 2007. Precipitation associated with lightningignited wildfires in Arizona and New Mexico. Int J Wild Fire 16, 242-254.

Hirsch R.P., 1991. Validation samples. Biometrics 47, 1193 1194. PMid:1742438

Hosmer D., Lemeshow S., 2000. Applied logistic regression. Wiley-Interscience, New York. 392 pp. PMid:10886529

Huang S., Yang Y., Wang Y., 2003. A critical look at procedures for validating growth and yield models. In: Modelling forest systems (Amaro A., Reed D., Soares P., eds). Ed CAB International, Wallingford, Oxfordshire, UK. pp. 271-293.

Hudson G., Wackernagel H., 1994. Mapping temperature using Kriging with external drift: theory and example from Scotland. Int J Clim 14, 77-91.

Jarvis C.H., Stuart N., 2001. A comparison among strategies for interpolating maximum and minimum daily air temperatures. Part II: the interaction between number of guiding variables and the type of interpolation method. J Appl Meteorol 40, 1075-1084.<1075:ACASFI>2.0.CO;2

Junta De Castilla Y León, 2005. Castilla y León crece con el bosque. Consejería de Medio Ambiente. Serie Divulgativa. 48 pp. [In Spanish].

Kourtz P.H., Todd B., 1992. Predicting the daily occurrence of lightning-caused forest Fires. Inf Rep PI-X-112. Canadian Forest Service, Petawawa.

Kozak A., Kozak R., 2003. Does cross validation provide additional information in the evaluation of regression models? Can J For Res 33, 976-987.

Krawchuk M.A., Cumming S.G., Flannigan M.D., Wein R.W., 2006. Biotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forest. Ecology 87, 458-468. PMid:16637370

Larjavaara M., Pennanen J., Tuomi T.J., 2005. Lightning that ignites forest fires in Finland. Agr For Meteor 132, 171-180.

Latham D., Schlieter J.A., 1989. Ignition probabilities of wildland fuels based on simulated lightning discharges, USDA Forest Service, Research Paper INT-411. Ogden, UT. 16 pp. latham d., williams E., 2001. Lightning and forest f ires. In: Forest fires, behavior and ecological effects (Johnson E.A., Miyanishi K. eds). Academic Press. pp. 375-418.

Manry D.E., Knight R.S., 1986. Lightning density and burning frequency in South African vegetation. Vegetatio 66, 67-76.

Martin R.E., 1982. Fire history and its role in succession. In: Forest succession and stand development research in the Northwest (Means J.E., ed). USDA Forest Service Forest Research Laboratory, Oregon State University, Corvallis. 92-98.

Martínez J., Vega-García C., CHUVIECO E., 2009. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ Manage 90, 1241-1252. PMid:18723267

Martín-León F., 1999. Caracterización de la actividad tormentosa peninsular y áreas limítrofes durante el periodo estival de 1994. Proc IV Simposio Nacional de Predicción del I.N.M, Madrid, Spain, April 15-19 1996. [In Spanish]. PMid:10454882

Mcrae R., 1992. Prediction of areas prone to lightning ignition. Int J Wild Fire 2, 123-130.

Myers RH., 1990. Classical and modern regression with applications. Boston, USA, PWS-KENT Publishing Company. 488 pp.

Nagelkerke N.J.D., 1991. A note on a general definition of the coefficient of determination. Biometrika 78, 691- 692.

Nieto H., Aguado I., Chuvieco E., 2006. Estimation of lightning-caused fires occurrence probability in central Spain. Proc 5th International conference on forest fire research. Coimbra, Portugal, Nov 27-30. 15 pp.

Ogilcie C.J., 1989. Lightning fires in Saskatchewan Forests. Fire Manage Notes 50, 31-32.

Pacheco C.E., Aguado I., Nieto H., 2009. Análisis de ocurrencia de incendios forestales causados por rayo en la España peninsular. Geofocus 9, 232-249. [In Spanish].

Pérez-Puebla F., 2004. Cooperación entre las redes de rayos de España y Portugal. Proc Jornadas Científicas de la Asociación Meteorológica Española, Badajoz, Spain. Feb 11-13. 10 pp. [In Spanish].

Podur J., Martell D.L., Csillag F., 2003. Spatial patterns of lightning-caused forest fires in Ontario, 1976-1998. Ecol Model 164, 1-20.

Pyne S.J., Andrews P.J., Laven R.D., 1996. Introduction to wildland fire. Second edition, John Wiley & Sons, New York-Chichester. 769 pp.

Rivas Soriano L., De Pablo F., García E., 2001. Cloud-to-ground lightning activity in the Iberian Peninsula: 1992-94. J Geophys Res 106, 11891-11901.

Rivas Soriano L., De Pablo F., Tomás C., 2005. Ten-year study of cloud-to-ground lightning activity in the Iberian Peninsula. J Atmos Sol Ter Phys 67, 1632-1639.

Rorig M.L., Ferguson S.A., 1999. Characteristics of lightning and wildland fire ignition in the Pacific Northwest. J Appl Meteor 38, 1565-1575.<1565:COLAWF>2.0.CO;2

Rorig M.L., Ferguson S.A., 2002. The 2000 fire season: lightning-caused fires. J Atmo Sci 41, 786-791.

Rorig M.L., Mckay S.J., Ferguson S.A., Werth P., 2007. Model-generated predictions of dry thunderstorm potential. J Appl Meteorol Clim 46, 605-614.

SAS INSTITUTE INC., 2004. SAS/STAT® 9.1User's Guide. SAS Institute Inc, Cary, NC.

Saveland J.M., Neuenschwander L.F., 1990. A signal detection framework to evaluate models of tree mortality following fire damage.

DOI: 10.5424/fs/2011201-9409