Leaf area index estimation in a pine plantation with LAI-2000 under direct sunlight conditions: relationship with inventory and hydrologic variables

A. Molina, A. D. del-Campo


LAI is a key factor in light and rainfall interception processes in forest stands and, for this reason, is called to play an important role in global change adaptive silviculture. Therefore, it is necessary to develop practical and operative methodologies to measure this parameter as well as simple relationships with other silvicultural variables. This work has studied 1) the feasibility of LAI-2000 sensor in estimating LAI-stand when readings are taken under direct sunlight conditions; and 2) the ability of LAI in studying rainfall partitioned into throughfall (T) in an Aleppo pine stand after different thinning intensities, as well as its relationships to basal area, (G), cover (FCC), and tree density (D). Results showed that the angular correction scheme applied to LAI-2000 direct-sunlight readings stabilized them for different solar angles, allowing a better operational use of LAI-2000 in Mediterranean areas, where uniform overcast conditions are difficult to meet and predict. Forest cover showed the highest predictive ability of LAI (R2 = 0.98; S = 0.28), then G (R2 = 0.96; S = 0.43) and D (R2 = 0.50; S = 0.28). In the hydrological plane, T increased with thinning intensity, being G the most explanatory variable (R2 = 0.81; S = 3.07) and LAI the one that showed the poorest relation with it (R2 = 0.69; S = 3.95). These results open a way for forest hydrologic modeling taking LAI as an input variable either estimated form LAI-2000 or deducted from inventory data.


aleppo pine; thinning; throughfall; basal area; forest cover; regression models


Aboal J.R., Jiménez M.S., Morales D., Gil P., 2000. Effects of thinning on throughfall in Canary Islands pine forest – The role of fog. J. Hydrol. 238, 218-230. http://dx.doi.org/10.1016/S0022-1694(00)00329-2

Alcamo J., Moreno J.M., Nováky B., Bindi M., Corobov R., Devoy R.J.N., Giannakopoulos C., Martin E., Olesen J.E., Shvidenko A., 2007. Europe. Climate Change 2007: impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the In-tergovernmental Panel on Climate Change (Parry M.L., Canziani O.F., Palutikof J.P., Van der Linden P.J., Hanson C.E., eds). Cambridge University Press, Cambridge, UK. 5pp. 41-580.

Arias D., Calvo-Alvarado J., Dohrenbusch A., 2007. Calibration of LAI-2000 to estimate leaf area index (LAI) and assessment of its relationship with stand productivity in six native and introduced tree species in Costa Rica. For Ecol Manage 247(1-3), 185-193.

Asner G.P., Scurlock J.M., Hicke J.A., 2003. Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecol Biogeogr 12, 91-205. http://dx.doi.org/10.1046/j.1466-822X.2003.00026.x

Baynes J., Dunn G.M., 1997. Estimating foliage surface area index in 8-year-old-stands of Pinus elliotti var. elliotti X Pinus caribaea var. hondurensis of variable quality. Can J For Res 27, 1367-1375.

Bengoa J.L., 1999. Estimación de la estructura foliar en masas forestales: fundamentos teóricos y análisis de la coherencia y fiabilidad de las mediciones mediante la aplicación informática TDL 2.0. Invest Agrar: Sist Recur For 8(2), 423-445.

Cescatti A., 1998. Effects of needle clumping in shoots and crowns on the radiative regime of a Norway spruce canopy. Annales des Sciences Forestieres 55, 89-102. http://dx.doi.org/10.1051/forest:19980106

Chen J.M., Black T.A., 1992. Defining leaf area index for non flat leaves. Plant Cell Environ 15, 421-429. http://dx.doi.org/10.1111/j.1365-3040.1992.tb00992.x

Chen J.M., Cihlar J., 1996. Retrieving Leaf Area Index of boreal conifers forests using Landsat images. Remote Sens Environ 55, 153-162. http://dx.doi.org/10.1016/0034-4257(95)00195-6

Cifuentes Sánchez V.J., Navarro Cerrillo R.M., 1999. Determinación del índice de superficie foliar (leaf area index) en masas forestales usando imágenes landsat-tm. Conclusiones de un primer estudio en la sierra norte de Córdoba. Mapping, 58. Disponible en: www.mappinginteractivo.com/plantilla-ante.asp?id_articulo=696 [31 May-2010].

Crockford R.H., Richardson P.D., 2000. Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol Process 14, 2903-2920. http://dx.doi.org/10.1002/1099-1085(200011/12)14:16/17<2903::AID-HYP126>3.0.CO;2-6

Davi H., Baret F., Huc R., Dufr Ne E., 2008. Effect of thinning on LAI variance in heterogeneous forests. For Ecol Manage 256, 890-899.

Deblonde G., Penner ., Royer A., 1994. Measuring Leaf Area Index with the LI-COR LAI-2000 in pine stands. Ecology 75(5), 1507-1511. http://dx.doi.org/10.2307/1937474

Grier C.C., Running S.W., 1977. Leaf area of mature Northwestern coniferous forests: relation to site water balance. Ecology 58, 893-899. http://dx.doi.org/10.2307/1936225

Hanssen K.H., Solberg S., 2007. Assessment of defoliation during a pine sawfly outbreak: calibration of airborne laser scanning data with hemispherical photography. For Ecol Manage 250, 9-16.

Keenan T., García R., Friend A.D., Zaehle S., Gracia C., Sabate S. 2009. Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modeling. Biogeosciences Discuss 6, 2285-2329. http://dx.doi.org/10.5194/bgd-6-2285-2009

Kimmins J.P., 2004. Forest ecology: a foundation for sutainable forest management and environmental ethics in forestry, 3rd e. Prentice Hall, Upper Saddle River, NJ. 596 pp. PMCid:416490

Kozlowski T.T., Kramer P.J., Pallardy S.G., 1991. The physiological ecology of woody plants. Academic Press. 657 pp.

Landsberg J.J., Waring R.H., 1997. A generalised model of forest productivity using simplified concepts of radiation- use efficiency, carbon balance and partitioning. For Ecol Manage 95, 209-228.

Leblanc S., Chen J.M., 2001. A practical scheme for correcting multiple scattering effects on optical LAI measurements. Agric For Meteorol 110, 125-139. http://dx.doi.org/10.1016/S0168-1923(01)00284-2

Li-Cor, 1991. LAI-2000 Plant Canopy Analyser Operating Manual. Lincoln, Nebraska, EE.UU. LI-COR Inc.

Llorens P., Poch R., Latron J., Gallart F., 1997. Rainfall interception by a Pinus sylvestris forest patch overgrown in a Mediterranean mountainous abandoned area I. Monitoring design and results down to the event scale. J Hydrol 199, 331-345. http://dx.doi.org/10.1016/S0022-1694(96)03334-3

Llorens P., Domingo F., 2007. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J Hydrol 335, 37-54. http://dx.doi.org/10.1016/j.jhydrol.2006.10.032

López Serrano F.R., Landete Castillejos T., Martínez Milán J., Cerro Barja A., 2000. LAI estimation of natural pine forest using a non-standard sampling technique. Agric For Meteorol 101, 95-111. http://dx.doi.org/10.1016/S0168-1923(99)00171-9

Mcdowell N.T., Adams H.D., Bailey J.D., Kolb T.E., 2007. The role of stand density on growth efficiency, leaf area index, and resin flow in southwestern ponderosa pine forests. Can J For Res 37, 343-355. http://dx.doi.org/10.1139/X06-233

Monsi M., Saeki T., 1953. Über den linchtfaktor in den pflanzengesellschaften und seine bedeutung für die stoffproduktion. Japanese J Bot 14, 22-52.

Navarro Cerrillo R.M., Sánchez De La Orden M., Gómez Bonilla J., García-Ferrer A., Hernández Clemente R., Lanjeri S., 2010. Aplicación de imágenes LIDAR para la estimación del índice de superficie foliar (LAI) en encinas [Quercus ilex L. subsp. ballota (Desf.) Samp.]. Forest Systems 19(1), 61-69.

Olthof I., King D.J., Lautenschlager R.A., 2003. Overstory and understory leaf area index as indicators of forest response to ice storm damage. Ecological Indicators 3(1), 49-64. http://dx.doi.org/10.1016/S1470-160X(03)00010-4

Rojas E., Jovani A.J., Póveda J.A., 2009. Establecimiento de red de parcelas permanentes de masas coetáneas de Pinus halepensis Mill. en la Comunidad Valenciana. 5º CFE. [CD-ROM] 01-159.

Sabaté S., Gracia C.A., Sánchez A., 2002. Likely effects of climate on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For Ecol Manag 162, 23-37.

Saura S., Vega C., Piqué M., Lobo A., Pacual L. (ed.), 2005. Actas de la I reunión de inventario y teledetección forestal, Lleida 25-26 mar-04. Cuad Soc Esp Cienc For 19.

Snee R.D., 1977. Validation of regression models: methods and examples, Technometrics 19, 415-428. http://dx.doi.org/10.1080/00401706.1977.10489581

Steel R.G.D., Torrie J.H., 1988. Bioestadística: principios y procedimientos, 2ª ed. McGraw Hill. 622 pp.

Stenberg P., 1996. Correcting LAI-2000 estimates for the clumping of needles in shoots of conifers. Agric For Meteorol 79, 1-8. http://dx.doi.org/10.1016/0168-1923(95)02274-0

Stenberg P., Linder S., Smolander H., Flowerellis J., 1994. Perfomance of the LAI-2000 plant canopy analyzer in estimating leaf area index of some scots pine stands. Tree Physiol 14, 981-995. http://dx.doi.org/10.1093/treephys/14.7-8-9.981 PMid:14967664

Vose J.M., Swank W.T. 1990. A conceptual model of forest growth emphasizing stand leaf area (Chap 24). In: Process modeling of forest growth responses to environmental stress (Dixon R.K., Meldahl R.S., Ruark G.A., Warren W.G., eds). Timber Press, Inc, Portland, OR. pp. 278-287. Available: http://coweeta.uga.edu/publications/336.pdf [31 may, 2010].

DOI: 10.5424/fs/2011201-10009

Webpage: www.inia.es/Forestsystems