Models for supporting forest management in a changing environment

Luis Fontes, Jean-Daniel Bontemps, Harald Bugmann, Marcel Van Oijen, Carlos Gracia, Koen Kramer, Marcus Lindner, Thomas Rötzer, Jens Peter Skovsgaard


Forests are experiencing an environment that changes much faster than in at least the past several hundred years. In addition, the abiotic factors determining forest dynamics vary depending on its location. Forest modeling thus faces the new challenge of supporting forest management in the context of environmental change. This review has focused on three types of models that are used in forest management: empirical, process-based and hybrid models. Recent approaches might lead to the applicability of empirical models under changing environmental conditions, such as (i) the dynamic state-space approach, or (ii) the development of productivity-environment relationships. 25 process-based models in use in Europe were analyzed in terms of its structure, inputs and outputs having in mind a forest management perspective. Two paths for hybrid modeling were distinguished: (i) coupling of EMs and PBMs by developing signal-transfer environment-productivity functions; (ii) hybrid models with causal structure including both empirical and mechanistic components. Several gaps of knowledge were identified for the three types of models reviewed. The strengths and weaknesses of the three model types differ and all are likely to remain in use. There is a trade-off between how little data the models need for calibration and simulation purposes, and the variety of input-output relationships that they can quantify. PBMs are the most versatile, with a wide range of environmental conditions and output variables they can account for. However, PBMs require more data making them less applicable whenever data for calibration are scarce. The EMs, on the other hand, are easier to run as they require much less prior information, but their simplicity makes them less reliable in the context of environmental changes. These different deficiencies of PBMs and EMs suggest that hybrid models may be a good compromise, but a more extensive testing of these models is required in practice.


process-based models; empirical models; environmental change; hybrid models; forest management;

Full Text:



Agren G.I., Bosatta E., 1998. Theoretical ecosystem ecology: understanding element cycles. Cambridge University Press, Cambridge.

Albert M., Schmidt M., 2010. Climate-sensitive modelling of site-productivity relationships for Norway spruce [Picea abies (L.) Karst.] and common beech (Fagus sylvatica L.). Forest Ecology and Management 259(4), 739-749.

Almeida A.C., Landsberg J.J., Sands P.J., Ambrogi M.S., Fonseca S., Barddal S.M., Bertolucci F.L., 2004. Needs and opportunities for using a processbased productivity model as a practical tool in Eucalyptus plantations. Forest Ecology and Management 193(1-2), 167-177.

Assmann E., 1970. The principles of forest yield studies. Pergamon Press, Oxford.

Baldwin V.C., Burkhart H.E., Westfall J.A., Peterson K.D., 2001. Linking growth and yield and process models to estimate impact of environmental changes on growth of loblolly pine. Forest Science 47(1), 77-82.

Bartelink H.H., Mohren G.M.J., 2004. Modelling at the interface between scientific knowledge and management issues. Towards the sustainable use of Europe's forests. Forest Ecosystem and Landscape Research: Scientific Challenges and Opportunities 49, 21-30.

Battaglia M., Sands P.J., 1998. Process-based forest productivity models and their application in forest management. Forest Ecology and Management 102(1), 13-32.

Bontemps J.D., Hervé J.C., Dhôte J.F., 2009. Longterm changes in forest productivity: a consistent assessment in even-aged stands. Forest Science 55(6), 549-564.

Braun S., Thomas V.F.D., Quiring R., Fluckiger W., 2010. Does nitrogen deposition increase forest production? The role of phosphorus. Environmental Pollution 158(6), 2043-2052.

Briggs D., 2010. Enhancing forest value productivity through fiber quality. Journal of Forestry 108(4), 174-182.

Bugmann H., 2001. A review of forest gap models. Climatic Change 51(3-4), 259-305.

Bugmann H., Bigler C., 2010. Succession modeling shows that CO2 fertilization effect in forests is offset by reduced tree longevity. Oecologia, under revision.

Bugmann H., Lindner M., Lasch P., Flechsig M., Ebert B., Cramer W., 2000. Scaling issues in forest succession modelling. Climatic Change 44(3), 265-289.

Bugmann H., Martin P., 1995. How physics and biology matter in forest gap models. Climatic Change 29(3), 251-257.

Bugmann H.K.M., 1996. A simplified forest model to study species composition along climate gradients. Ecology 77(7), 2055-2074.

Cariboni J., Gatelli D., Liska R., Saltelli A., 2007. The role of sensitivity analysis in ecological modelling. Ecological Modelling 203(1-2), 167-182.

Chen H.Y.H., Krestov P.V., Klinka K., 2002. Trembling aspen site index in relation to environmental measures of site quality at two spatial scales. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere 32(1), 112-119.

Chertov O.G., Komarov A.S., Tsiplianovsky A.M., 1999. A combined simulation model of Scots pine, Norway spruce and Silver birch ecosystems in the European boreal zone. Forest Ecology and Management 116(1-3), 189-206.

Coops N.C., Waring R.H., 2001. The use of multiscale remote sensing imagery to derive regional estimates of forest growth capacity using 3-PGS. Remote Sensing of Environment 75(3), 324-334.

De Coligny F., Ancelin P., Cornu G., Courbaud B., Dreyfus P., Goreaud F., Gourlet-Fleury S., Meredieu C., Saint-André L., 2002. CAPSIS: Computer-Aided Projection for Strategies In: Silviculture: advantages of a shared forest-modelling platform. In Modelling forest systems (Amaro A., Reed D., Soares P., eds). CABI Publishing.

Deckmyn G., Verbeeck H., De Beeck M.O., Vansteenkiste D., Steppe K., Ceulemans R., 2008. ANAFORE: a stand-scale process-based forest model that includes wood tissue development and labile carbon storage in trees. Ecological Modelling 215(4), 345-368.

Dhôte J.F., 1996. A model of even-aged beech stands productivity with process-based interpretations. Annales Des Sciences Forestieres 53(1), 1-20.

Díaz-Maroto I.J., Vila-Lameiro P., Díaz-Maroto M.C., 2006. Autecology of sessile oak (Quercus petraea) in the north-west Iberian Peninsula. Scandinavian Journal of Forest Research 21(6), 458-469.

Didion M., Kupferschmid A.D., Zingg A., Fahse L., Bugmann H., 2009. Gaining local accuracy while not losing generality - extending the range of gap model applications. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere 39(6), 1092-1107.

Dufrene E., Davi H., Francois C., Le Maire G., Le Dantec V., Granier A., 2005. Modelling carbon and water cycles in a beech forest Part I: Model description and uncertainty analysis on modelled NEE. Ecological Modelling 185(2-4), 407-436.

Enquist B.J., West G.B., Brown J.H., 2009. Extensions and evaluations of a general quantitative theory of forest structure and dynamics. Proceedings of the National Academy of Sciences of the United States of America 106(17), 7046-7051.
PMid:19363161 PMCid:2678479

Fontes L., Landsberg J., Tome J., Tome M., Pacheco C.A., Soares P., Araujo C., 2006. Calibration and testing of a generalized process-based model for use in Portuguese eucalyptus plantations. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere 36(12), 3209-3221.

Franceschini T., Bontemps J.-D., Gelhaye P., Rittie D., Herve J.-C., Gegout J.-C., Leban J.-M., Decreasing trend and fluctuations in the mean ring density of Norway spruce through the twentieth century. Ann For Sci [in press].

García O., 1994. The state-space approach in growth modelling. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 24(9), 1894-1903.

García O., Ruiz F., 2003. A growth model for eucalypt in Galicia, Spain. Forest Ecology and Management 173(1-3), 49-62.

Gillet F., 2008. Modelling vegetation dynamics in heterogeneous pasture-woodland landscapes. Ecological Modelling 217(1-2), 1-18.

Grote R., Pretzsch H., 2002. A model for individual tree development based on physiological processes. Plant Biology 4(2), 167-180.

Hanewinkel M., Peltola H., Soares P., Gonzálezolabarria J.R., 2010. Recent approaches to model the risk of storm and fire to European forests and their integration into simulation and decision support tools. Forest Systems. [In press].

Hartley I.P., Armstrong A.F., Murthyw R., Barron-Gafford G., Ineson P., Atkin O.K., 2006. The dependence of respiration on photosynthetic substrate supply and temperature: integrating leaf, soil and ecosystem measurements. Global Change Biology 12(10), 1954-1968.

Högberg P., 2007. Environmental science – Nitrogen impacts on forest carbon. Nature 447(7146), 781-782.

Johnsen K., Samuelson L., Teskey R., Mcnulty S., Fox T., 2001. Process models as tools in forestry research and management. Forest Science 47(1), 2-8.

Kahle H.-P., Karjalainen T., Schuck A., Ågren G.I., Kellomäki S., Mellert K., Prietzel J., Rehfuess K.-E., Spiecker H., 2008. Causes and consequences of forest growth trends in Europe brill, Leiden.

Kärkkäinen L., Matala J., Harkonen K., Kellomäki S., Nuutinen T., 2008. Potential recovery of industrial wood and energy wood raw material in different cutting and climate scenarios for Finland. Biomass & Bioenergy 32(10), 934-943.

Keenan T., Sabaté S., Gracia C., 2008. Forest ecophysiological models and carbon sequestration. In: Managing forest ecosystems: the challenge of climate change (Bravo F., Jandl R., LeMay V., Von Gadow K., eds). Springer, Netherlands. pp. 83-102.

Kellomäki S., Vaisanen H., 1997. Modelling the dynamics of the forest ecosystem for climate change studies in the boreal conditions. Ecological Modelling 97(1-2), 121-140.

King G.A., 1993. Conceptual approaches for incorporating climate change into the development of forest management options for sequestering carbon. Climate Research 3(61-78).

Komarov A., Chertov O., Zudin S., Nadporozhskaya M., Mikhailov A., Bykhovets S., Zudina E., Zoubkova E., 2003. EFIMOD 2 - a model of growth and cycling of elements in boreal forest ecosystems. Ecological Modelling 170(2-3), 373-392.

körner C., 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4), 445-459.

Körner C., 2006. Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist 172(3), 393-411.

Körner C., Asshoff R., Bignucolo O., Hattenschwiler S., Keel S.G., Peláez-Riedl S., Pepin S., Siegwolf R.T.W., Zotz G., 2005. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309(5739), 1360-1362.

Korzukhin M.D., Termikaelian M.T., Wagner R.G., 1996. Process versus empirical models: which approach for forest ecosystem management? Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere 26(5), 879-887.

Kramer K., 2010. Population- and individually-based approaches of forest genetic modeling. Forest Systems. [In press].

Kramer K., Bruinderink G.W.T.A.G., Prins H.H.T., 2006. Spatial interactions between ungulate herbivory and forest management. Forest Ecology and Management 226(1-3), 238-247.

Kramer K., Buiteveld J., Forstreuter M., Geburek T., Leonardi S., Menozzi P., Povillon F., Schelhaas M., Du Cros E.T., Vendramin G.G., Van Der Werf D.C., 2008. Bridging the gap between ecophysiological and genetic knowledge to assess the adaptive potential of European beech. Ecological Modelling 216(3-4), 333-353.

Kramer K., Degen B., Buschbom J., Hickler T., Thuiller W., Sykes M.T., De Winter W., 2010. Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change-Range, abundance, genetic diversity and adaptive response. Forest Ecology and Management 259(11), 2213-2222.

Kramer K., Groen T.A., Van Wieren S.E., 2003. The interacting effects of ungulates and fire on forest dynamics: an analysis using the model FORSPACE. Forest Ecology and Management 181(1-2), 205-222.

Landsberg J., 2003. Modelling forest ecosystems: state of the art, challenges, and future directions. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere 33, 385-397.

Landsberg J.J., Waring R.H., 1997. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management 95(3), 209-228.

Lasch P., Badeck F.W., Suckow F., Lindner M., Mohr P., 2005. Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). Forest Ecology and Management 207(1-2), 59-74. Le Maire G., Davi H., Soudani K., Francois C., Le Dantec V., Dufrene E., 2005. Modeling annual production and carbon fluxes of a large managed temperate forest using forest inventories, satellite data and field measurements. Tree Physiology 25(7), 859-872.

Leffelaar P.A., 1990. On scale problems in modelling: an example from soil ecology. In: Theoretical production ecology: reflections and prospects (Rabbinge R., Goudriaan J., Van Keulen H., Penning de Vries F.W.T., Van Laar H.H., eds). Pudoc, Wageningen. pp. 57-73.

Levins R., 1966. Strategy of model building in population biology. American Scientist 54(4), 421-&.

Lexer M.J., Honninger K., 2001. A modified 3D-patch model for spatially explicit simulation of vegetation composition in heterogeneous landscapes. Forest Ecology and Management 144(1-3), 43-65.

Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., García-Gonzalo J., Seidl R., Delzon S., Corona P., Kolström M., Lexer M.J., Marchetti M., 2009. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management. [In revision].

Lischke H., 2009. MEPHYSTO: combining population dynamics and drought related ecophysiology in the regional forest model TreeMig. Birmensdorf, Switzerland.

Lischke H., Zimmermann N.E., Bolliger J., Rickebusch S., Loffler T.J., 2006. TreeMig: a forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecological Modelling 199(4), 409-420.

Luxmoore R.J., Hargrove W.W., Tharp M.L., Mac Post W., Berry M.W., Minser K.S., Cropper W.P., Johnson D.W., Zeide B., Amateis R.L., Burkhart H.E., Baldwin V.C., Peterson K.D., 2002. Addressing multi-use issues in sustainable forest management with signal-transfer modeling. Forest Ecology and Management 165(1-3), 295-304.

Luxmoore R.J., Hargrove W.W., Tharp M.L., Post W.M., Berry M.W., Minser K.S., Cropper W.P., Johnson D.W., Zeide B., Amateis R.L., Burkhart H.E., Baldwin V.C., Peterson, K.D., 2000. Signaltransfer modeling for regional assessment of forest responses to environmental changes in the southeastern United States. Environmental Modeling & Assessment 5(2), 125-137.

Mäkelä A., 2003. Process-based modelling of tree and stand growth: towards a hierarchical treatment of multiscale processes. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere 33(3), 398-409.

Mäkelä A., Landsberg J., Ek A.R., Burk T.E., Termikaelian M., Agren G.I., Oliver C.D., Puttonen P., 2000. Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiology 20(5-6), 289-298.

Mäkelä A., Makinen H., 2003. Generating 3D sawlogs with a process-based growth model. Forest Ecology and Management 184(1-3), 337-354.

Matala J., Hynyen J., Miina J., Ojansuu R., Peltola H., Sievanen R., Vaisanen H., Kellomäki S., 2003. Comparison of a physiological model and a statistical model for prediction of growth and yield in boreal forests. Ecological Modelling 161(1-2), 95-116.

Matala J., Ojansuu R., Peltola H., Raitio H., Kellomäki S., 2006. Modelling the response of tree growth to temperature and CO2 elevation as related to the fertility and current temperature sum of a site. Ecological Modelling 199(1), 39-52.

Matala J., Ojansuu R., Peltola H., Sievanen R., Kellomäki S., 2005. Introducing effects of temperature and CO2 elevation on tree growth into a statistical growth and yield model. Ecological Modelling 181(2-3), 173-190.

Matyas C., 1994. Modeling climate-change effects with provenance test data. Tree Physiology 14(7-9), 797-804.

Miehle P., Battaglia M., Sands P.J., Forrester D.I., Feikema P.M., Livesley S.J., Morris J.D., Arndt S.K., 2009. A comparison of four process-based models and a statistical regression model to predict growth of Eucalyptus globulus plantations. Ecological Modelling 220(5), 734-746.

Monserud R., 2003. Evaluating forest models in a sustainable forest management context. For Biometry Modell Inf Sci 1, 35-47.

Naesset E., Gobakken T., 2008. Estimation of aboveand below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sensing of Environment 112(6), 3079-3090.

Nightingale J.M., Hill M.J., Phinn S.R., Davies I.D., Held A.A., 2008. Use of 3-PG and 3-PGS to simulate forest growth dynamics of Australian tropical rainforests - II. An integrated system for modelling forest growth and scenario assessment within the wet tropics bioregion. Forest Ecology and Management 254(2), 122-133.

Nord-Larsen T., Johannsen V.K., 2007. A statespace approach to stand growth modelling of European beech. Ann For Sci 64(4), 365-374.

Nord-Larsen T., Meilby H., Skovsgaard J.P., 2009. Site-specific height growth models for six common tree species in Denmark. Scandinavian Journal of Forest Research 24(3), 194-204.

Nowak R.S., Ellsworth D.S., Smith S.D., 2004. Functional responses of plants to elevated atmospheric CO2 - do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist 162(2), 253-280.

Pietsch S.A., Hasenauer H., Kucera J., Cermak J., 2003. Modeling effects of hydrological changes on the carbon and nitrogen balance of oak in floodplains. Tree Physiology 23(11), 735-746.

Pietsch S.A., Hasenauer H., Thornton P.E., 2005. BGC-model parameters for tree species growing in central European forests. Forest Ecology and Management 211(3), 264-295.

Pinjuv G., Mason E.G., Watt M., 2006. Quantitative validation and comparison of a range of forest growth model types. Forest Ecology and Management 236(1), 37-46.

Porte A., 1999. Modélisation des effets du bilan hydrique sur la production primaire et la croissance d'un couvert de pin maritime (Pinus pinaster Ait.) en lande humide. Univ Paris XI, Orsay, France. p. 160.

Pretzsch H., 2007. Biometrical models as tools for forest ecosystem management. An European review and perspective. Pma 2006, Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, Proceedings. pp. 209-215.

Pretzsch H., 2009. Forest dynamics, growth and yield. Springer-Verlag, Berlin Heidelberg.

Pretzsch H., Grote R., Reineking B., Rötzer T., Seifert S., 2008. Models for forest ecosystem management: a European perspective. Annals of Botany 101(8), 1065-1087.
PMid:17954471 PMCid:2710278

Reed D., 1999. Ecophysiological models of forest growth: uses and limitations. In: Empirical and process-based models for forest tree and stand growth simulation (Amaro A., Tomé M., eds). pp. 305-311.

Reynolds J.F., Bugmann H., Pitelka L.F., 2001. How much physiology is needed in forest gap models for simulating long-term vegetation response to global change? Challenges, limitations, and potentials. Climatic Change 51(3-4), 541-557.

Robinson A.P., EK A.R., 2000. The consequences of hierarchy for modeling in forest ecosystems. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere 30(12), 1837-1846.

Rolff C., Agren G.I., 1999. Predicting effects of different harvesting intensities with a model of nitrogen limited forest growth. Ecological Modelling 118(2-3), 193-211.

Rötzer T., Leuchner M., Nunn A.J., 2010. Simulating stand climate, phenology, and photosynthesis of a forest stand with a process-based growth model International Journal of Biometeorology 54(4), 449-464.

Rötzer T., Seifert T., Pretzsch H., 2009. Modelling above and below ground carbon dynamics in a mixed beech and spruce stand influenced by climate. European Journal of Forest Research 128(2), 171-182.

Sánchez-Rodríguez F., Rodríguez-Soalleiro R., Español E., López C.A., Merino A., 2002. Influence of edaphic factors and tree nutritive status on the productivity of Pinus radiata D. Don plantations in northwestern Spain. Forest Ecology and Management 171(1-2), 181-189.

Schmid S., Zierl B., Bugmann H., 2006. Analyzing the carbon dynamics of central European forests, comparison of Biome-BGC simulations with measurements. Regional Environmental Change 6(4), 167-180.

Schumacher S., Bugmann H., Mladenoff D.J., 2004. Improving the formulation of tree growth and succession in a spatially explicit landscape model. Ecological Modelling 180(1), 175-194.

Schwalm C.R., EK A.R., 2004. A process-based model of forest ecosystems driven by meteorology. Ecological Modelling 179(3), 317-348.

Seidl R., Lexer M.J., Jager D., Honninger K., 2005. Evaluating the accuracy and generality of a hybrid patch model. Tree Physiology 25(7), 939-951.

Seynave I., Gegout J.C., Hervé J.C., Dhôte J.F. 2008. Is the spatial distribution of European beech (Fagus sylvatica L.) limited by its potential height growth? Journal of Biogeography 35(10), 1851-1862.

Seynave I., Gegout J.C., Hervé J.C., Dhôte J.F., Drapier J., Bruno E., Dume G., 2005. Picea abies site index prediction by environmental factors and understorey vegetation, a two-scale approach based on survey databases. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere 35(7), 1669-1678.

Skovsgaard J.P., Vanclay J.K., 2008. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81(1), 12-31.

Soudani K., Francois C., Le Maire G., Le Dantec V., Dufrene E., 2006. Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sensing of Environment 102(1-2), 161-175.

Spiecker H., Mielikäinen K., Köhl M., Skovsgaard J.P. (eds). 1996. Growth trends in European forests. Springer-Verlag, Berlin.

Stage A., 2003. How forest models are connected to reality: evaluation criteria for their use in decision support. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 33(3), 410-421.

Szwaluk K.S., Strong W.L., 2003. Near-surface soil characteristics and understory plants as predictors of Pinus contorta site index in southwestern Alberta, Canada. Forest Ecology and Management 176(1-3), 13-24.

Taylor A.R., Chen H.Y.H., Vandamme L., 2009. A review of forest succession models and their suitability for forest management planning. Forest Science 55(1), 23-36.

Thornley J.H.M., 1991. A transport-resistance model of forest growth and partitioning. Annals of Botany 68(3), 211-226.

Thornley J.H.M., Cannell M.G.R., 1992. Nitrogen relations in a forest plantation - Soil organic-matter ecosystem model. Annals of Botany 70(2), 137-151.

Thornton P.E., 1998 Description of a numerical simulation model for predicting the dynamics of energy, water, carbon, and nitrogen in a terrestrial ecosystem. University of Montana, Missoula. p. 280.

Tiktak A., Van Grinsven H.J.M., 1995. Review of sixteen forest-soil-atmosphere models. Ecological Modelling 83(1-2), 35-53.

Tyler A.L., Macmillan D.C., Dutch J., 1996. Models to predict the General Yield Class of Douglas fir, Japanese larch and Scots pine on better quality land in Scotland. Forestry 69(1), 13-24.

Valentine H.T., Mäkelä A., 2005. Bridging processbased and empirical approaches to modeling tree growth. Tree Physiology 25(7), 769-779.

Vallet P., 2008. Impact de différentes stratégies sylvicoles sur la fonction puits de carbone des peuplements forestiers. Forêt Wallonne(95), 38-57.

Van Der Werf W., Keesman K., Burgess P., Graves A., Pilbeam D., Incoll L.D., Metselaar K., Mayus M., Stappers R., Van Keulen H., Palma J., Dupraz C., 2007. Yield-SAFE: a parametersparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecological Engineering 29(4), 419-433.

Van Oijen M., Ågren G.I., Chertov O., Kellomäki S., Komarov A., Mobbs D., Murray M., 2008. Evaluation of past and future changes in European forest growth by means of four process-based models. In: Causes and consequences of forest growth trends in Europe (Kahle H.-P., Karjalainen T., Schuck A., Ågren G., Kellomäki S., Mellert K.-H., Prietzel J., Rehfuess K.E., Spiecker H., eds). Brill, Leiden. pp. 183-199.

Van Oijen M., Cannell M.G.R., Levy P.E., 2004. Modelling biogeochemical cycles in forests: state of the art and perspectives. In: Towards the sustainable use of Europe's forests - Forest ecosystem and landscape research: scientific challenges and opportunities (Andersson F., Birot Y., Päivinen R., eds). European Forest Institute. pp. 157-169.

Van Oijen M., Rougier J., Smith R., 2005. Bayesian calibration of process-based forest models: bridging the gap between models and data. Tree Physiology 25(7), 915-927.

Van Oijen M., Schapendonk A., Höglind M., 2010. On the relative magnitudes of photosynthesis, respiration, growth and carbon storage in vegetation. Annals of Botany 105(5), 793-797.
PMid:20237118 PMCid:2859914

Vanclay J.K., 1994. Modelling forest growth and yield: applications to mixed tropical forests. CAB INTERNATIONAL, Wallingford.

Vanclay J.K., Skovsgaard J.P., 1997. Evaluating forest growth models. Ecological Modelling 98(1), 1-12.

Verbeeck H., Samson R., Verdonck F., Lemeur R., 2006. Parameter sensitivity and uncertainty of the forest carbon flux model FORUG: a Monte Carlo analysis. Tree Physiology 26(6), 807-817.

West G.B., Enquist B.J., Brown J.H., 2009. A general quantitative theory of forest structure and dynamics. Proceedings of the National Academy of Sciences of the United States of America 106(17), 7040-7045.
PMid:19363160 PMCid:2678466

Xenakis G., Ray D., Mencuccini M., 2008. Sensitivity and uncertainty analysis from a coupled 3-PG and soil organic matter decomposition model. Ecological Modelling 219(1-2), 1-16.

Zeide B., 2003. The U-approach to forest modeling. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere 33(3), 480-489.

DOI: 10.5424/fs/201019S-9315