Simulating wood quality in forest management models

Annikki Mäkelä, Jennifer Grace, Gabrielle Deckmyn, Anu Kantola, V. Kint

Abstract


The raw material properties of wood develop as the tree grows, laying down wood cells with specific properties, and forming the stem structure that is focal for timber quality. This development is influenced by genetic and environmental factors and forest management practices. It is desirable in growth and yield models intended for the economic assessment of management practices to include some indication of wood quality and how it is affected by genetics, environmental factors and silvicultural measures. This paper reviews approaches and models that allow us to consider the development of wood quality in combination with tree growth, and thus to include wood quality in the assessment of the value of the yield. We present such models as classified into three categories based on their complexity and information needs: quality indicators, static quality models, and dynamic quality models. We illustrate three advanced dynamic quality models and their applications with example case studies. These include empirical, hybrid, and mechanistic models applied to predictions of both sawn timber and fibre properties. Finally, we consider the current challenges for wood quality modelling in connection with growth models.

Keywords


wood quality, model, simulation, timber, fibre

Full Text:

PDF

References


Ancelin P., Fourcaud T., LAC P., 2004. Modelling the biomechanical behaviour of growing trees at the forest stand scale. Part 1: Development of an Incremental Transfer Matrix Method and application to simplified tree structures. Annals of Forest Science 61, 263-275.
http://dx.doi.org/10.1051/forest:2004019

Archer R.R., 1987. Growth stresses and strains in trees. Springer-Verlag, Berlin, Germany. 240 pp.
http://dx.doi.org/10.1007/978-3-662-02511-6

Benjamin J., Chui Y.H., Zhang S.Y., 2007. A method to assess lumber grade recovery improvement potential for black spruce logs based on branchiness. Forest Products Journal 57, 34-41.

Booker R.E., Sell J., 1998. The nanostructure of the cell wall of softwoods and its functions in a living tree. Holz als Roh-und Werkstoff 56, 1-8.
http://dx.doi.org/10.1007/s001070050255

Bouriaud O., Bréda N., Le Moguédec G., Nepveu G., 2004. Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees 18, 264-276.
http://dx.doi.org/10.1007/s00468-003-0303-x

Brownlie R.K., Carson W.W., Firth J.G., Goulding C.J., 2007. An image-based dendrometry tool for standing trees. New Zealand Journal of Forestry Science 37, 153-168.

Cao T.J., Valsta L., Harkonen S., Saranpaa P., Makela A., 2008. Effects of thinning and fertilization on wood properties and economic returns for Norway spruce. Forest Ecology and Management 256, 1280-1289.
http://dx.doi.org/10.1016/j.foreco.2008.06.025

Catchpoole K., Nester M.R., Harding K., 2007. Predicting wood value in Queensland Carribbean pine plantations using a decision support system. Australian Forestry 70, 120-124.

Chiorescu s., Grönlund A., 2000.Validation of a CTbased simulator against a sawmill yield. Forest Products Journal 50, 69-76.



Cown D.J., 1974. Comparison of the effect of two thinning regimes on some wood properties of radiata pine. New Zealand Journal of Forestry Science 4, 540-51.

Curiel Yuste J., Konôpka B., Janssens I.A., Koenen K., Xiao C.W., Ceulemans R., 2005. Contrasting net primary productivity and carbon distribution between neighboring stands of Quercus robur and Pinus sylvestris. Tree Physiology 25, 701-712.
http://dx.doi.org/10.1093/treephys/25.6.701
PMid:15805090

De Reffye P., Fourcaud T., Blaise F., Barthélémy D., Houllier F., 1997. A functional model of tree growth and tree architecture. Silva Fennica 31, 297-311.

Deckmyn G., Evans S.P., Randle T.J., 2006. Refined pipe theory for mechanistic modeling of wood development. Tree Physiology 26, 703-717.
http://dx.doi.org/10.1093/treephys/26.6.703
PMid:16510386

Deckmyn G., Verbeeck H., Op De Beeck M., Vansteenkiste D., Steppe K., Ceulemans R. 2008. ANAFORE: a stand-scale process-based forest model that includes wood tissue development and labile carbon storage in trees. Ecological Modelling 215, 345-368.
http://dx.doi.org/10.1016/j.ecolmodel.2008.04.007

Deckmyn G., Mali B., Kraigher H., Torelli N., Op De Beeck M., Ceulemans R., 2009. Using the process-based stand model ANAFORE including Bayesian optimisation to predict wood quality and quantity and their uncertainty in Slovenian beech. Silva Fennica 43, 523-534.

Degron R., Nepveu G., 1996. Predicting intra- and intertree variability of wood density in sessile oak (Quercus petraea Liebl) through modelling earlywood and latewood width and density from cambial age, ring width and height in the tree. Annals of Forest Science 53, 1019-30.
http://dx.doi.org/10.1051/forest:19960509

Deleuze C., Houllier F., 1995. Prediction of stem profi le of Picea abies using a process-based tree growth model. Tree Physiology 15, 113-120.
http://dx.doi.org/10.1093/treephys/15.2.113
PMid:14965983

Deleuze C., Houllier F., 1997. A transport model for tree ring width. Silva Fennica 31, 239-250.

Drew D.M., Downes G.M., Battaglia M., 2010. Cambium, a process-based model of daily xylem development in Eucalyptus. Journal of Theoretical Biology 264, 395-406.
http://dx.doi.org/10.1016/j.jtbi.2010.02.013
PMid:20167220

Eder M., Rüggeberg M., Burgert I., 2009. A closeup view of the mechanical design of arborescent plants at different levels of hierarchy: requirements and structural solutions. New Zealand Journal of Forestry Science 39, 115-124.

Forest L., Demongeot J., 2006. Cellular modelling of secondary radial growth in conifer trees: application to Pinus radiata (D. Don). Bulletin of Mathematical Biology 68, 753-784
http://dx.doi.org/10.1007/s11538-005-9004-5
PMid:16802082

Fourcaud T., LAC P., 2003. Numerical modelling of shape regulation and growth stresses in trees. An incremental static finite element formulation. Trees 17,23-30.
http://dx.doi.org/10.1007/s00468-002-0202-6

Fritts H.C., Shashkin A.S., Downes G.M., 1999. TreeRing 3: A simulation model of conifer ring growth and cell structure. In: Tree ring analysis: biological, methodological and environmental aspects (Wimmer R., Vetter R.E., eds). CAB International, Wallingford, Oxon, UK. pp. 3-32.

Gardiner B., Bryne K., Hale S., Kamimura K., Mitchell S., Peltola H., Ruel J-C., 2008. A review of mechanistic modelling of wind damage risk to forests. Forestry 81, 447-463.
http://dx.doi.org/10.1093/forestry/cpn022

Gobakken T., 2000. Models for assessing timber grade distribution and economic value of standing birch trees. Scandinavian Journal of Forest Research 15, 570-8.
http://dx.doi.org/10.1080/028275800750173555

Goudie J.W., 2002. Modelling the impact of silvicultural activities on the wood characteristics of Coastal western hemlock in British Columbia. In: IUFRO WP S5.01.04 Fourth workshop, Connection Between Forest Resources and Wood Quality: Modelling Approaches and Simulation software (Nepveu G., ed). Harrison Hot Springs, British Columbia, Canada, September 8-15, 2002. pp. 528-536.



Gordon A.D., Wakelin S.J., Threadgill J.A., 2006. Using measured and modelled wood quality information to optimise harvest scheduling and log allocation decisions. New Zealand Journal of Forestry Science 36, 198-215.

Grace J.C., Blundell W., Pont D., 1998. Branch development in radiata pine- model outline and data collection. New Zealand Journal of Forestry Science 28, 182-194.

Grace J.C., Pont D., Goulding C.J., Rawley B., 1999. Modelling branch development for forest management. New Zealand Journal of Forestry Science 29, 391-408.

Grace J.C., Pont D., Sherman L., Woo G., Aitchison D., 2006. Variability in stem wood properties due to branches. New Zealand Journal of Forestry Science 36, 313-324.

Grace J.C., Andersen C., Brownlie R., Fritzsche M., 2009 Stem damage in radiata pine: observations with respect to site, silviculture and seedlot. Proceedings of the 2nd International Conference Wind Effects on Trees. Germany 13-16 October 2009. Berichte des Meteorologischen Instits der Albert-Ludwigs-Universität, Freiburg. Nr. 19.



Hapca A.I., Mothe F., Leban J.M, 2007. A digital photographic method for 3D reconstruction of standing tree shape. Annals of Forest Science 64, 631-7.
http://dx.doi.org/10.1051/forest:2007041

Høibø O.A., Vestöl G., Sundby H.J., Moltenberg D.E., 1997. Modelling knottiness and knot characteristics of Norway spruce [Picea abies (L.) Karst] - the influence of height growth on knot characteristics. In: Connection between silviculture and wood quality through modelling approaches and simulation softwares. Proceedings of IUFRO WP S5.01-04 second workshop, South Africa, August 26-31, 1996. Equipe de Recherches sur la Qualité des Bois 1997/7, INRA Nancy.



Hölttä T., Mäkinen H., Nöjd P., Mäkelä A., Nikinmaa E., 2010. A physiological model of softwood cambial growth. Tree Physiology 30, 1235-1257.
http://dx.doi.org/10.1093/treephys/tpq068
PMid:20660493

Hyytiäinen K., Hari P., Kokkila T., Mäkelä A., Tahvonen O., Taipale J., 2004. Connecting a process-based forest growth model to stand-level economic optimization. Canadian Journal of Forest Research 34, 2060-2073.
http://dx.doi.org/10.1139/x04-056

Houllier F., Leban J.M., Colin F., 1995. Linking growth modelling to timber quality assessment for Norway spruce. Forest Ecology and Management 74, 91-102.
http://dx.doi.org/10.1016/0378-1127(94)03510-4

Ikonen V.-P., Kellomäki S., Peltola H., 2003. Linking tree stem properties of Scots pine (Pinus sylvestris L.) to sawn timber properties through simulated sawing. Forest Ecology and Management 174, 251-263.
http://dx.doi.org/10.1016/S0378-1127(02)00035-X

Ikonen V., Peltola H., Wilhelmsson L., Kilpeläinen A., Väisänen H., Nuutinen T., Kellomäki S., 2008. Modelling the distribution of wood properties along the stems of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst.] as affected by silvicultural management. Forest Ecology and Management 256, 1356-71.
http://dx.doi.org/10.1016/j.foreco.2008.06.039

Kantola A., Mäkinen H., Mäkelä A., 2007. Stem form and branchiness of Norway spruce as a sawn timber –Predicted by a process based model. Forest Ecology and Management 241, 209-222.
http://dx.doi.org/10.1016/j.foreco.2007.01.013

Kantola A., Härkonen S., Mäkinen H., Mäkelä A., 2008. Predicting timber properties from tree measurements at felling: evaluation of the RetroSTEM model and TreeViz software for Norway spruce. Forest Ecology and Management, 255, 3524-3533.
http://dx.doi.org/10.1016/j.foreco.2008.02.034

Kantola A, Song T., Usenius A., Heikkilä A., 2009. Simulated yield and quality distribution of sawn timber from final felling in a Norway spruce [Picea abies (L.) Karst.] stand with varying thinning regimes: a case study. Wood Material Science and Engineering 4, 87-97.
http://dx.doi.org/10.1080/17480270902987058

Kellomäki S., Ikonen V.-P., Peltola H., Kolström T., 1999. Modelling the structural growth of Scots pine with implications for wood quality. Ecological Modeling 122, 117-134.
http://dx.doi.org/10.1016/S0304-3800(99)00086-1

Kibblewhite R.P., Suckling I.D., Evans R., Grace J.C., Riddell M.J.C., 2010. Lignin and carbohydrate variation with earlywood, latewood and compression wood content of bent and straight ramets of a radiata pine clone. Holzforschung 64, 101-109.
http://dx.doi.org/10.1515/hf.2010.016

Kliger R., Johansson M., Perstorper M., JOHANSSON G., 2003. Distortion of Norway Spruce timber, Part 3 Modelling bow and spring. Holz als Rohund Werkstoff 61, 241-250
http://dx.doi.org/10.1007/s00107-003-0399-0

Knoke T., 2003. Predicting red heartwood formation in beech trees (Fagus sylvatica L.). Ecological Modelling 169, 295-312.
http://dx.doi.org/10.1016/S0304-3800(03)00276-X

Knoke T.,Stang S., Remler N., Seifert T., 2006. Ranking the importance of quality variables for the price of high quality beech timber (Fagus sylvatica). Annals of Forest Science 63, 399-413.
http://dx.doi.org/10.1051/forest:2006020

Kramer E.M., 2001. A mathematical model of auxinmediated radial growth in trees. Journal of Theoretical Biology 208, 387-397.
http://dx.doi.org/10.1006/jtbi.2000.2220
PMid:11222044

Kramer E.M., 2002.A mathematical model of pattern formation in the vascular cambium of trees. Journal of Theoretical Biology 216, 147-158.
http://dx.doi.org/10.1006/jtbi.2002.2551
PMid:12079368

Kubler H., 1987. Growth stresses in trees and related wood properties. Forestry Abstracts 48, 131-189.

Larson P.R., 1962. A biological approach to wood quality. Tappi 45, 443-8.

Leban J.M., Duchanois G., 1990. SIMQUA: un logiciel de simulation de la qualité du bois. Annals of Forest Science 47, 483-493.
http://dx.doi.org/10.1051/forest:19900506

Leban J.M., Daquitaine R., Houllier F., Saintandré L., 1996. Linking models for tree growth and wood quality in Norway spruce. Part I. Validation of predictions for sawn boards properties, ring width, wood density and knottiness. In: IUFRO WP S5.01.04 Second workshop Connection between silviculture and wood quality through modelling approaches and simulation softwares (Nepveu G., ed). August 26-31, 1996, Berg-en-Dal, Kruger National Park, South Africa, August 26-31, 1996. pp. 220-228.



Leban J.M., Hapca A., Daquitane R., Saint-André L. 2002. A new functionality of the WinEPIFN© software: the simulation of the compression wood occurrence in the stems of standing trees. In: IUFRO WP S5.01.04 Fourth workshop, Connection Between Forest Resources and Wood Quality: Modelling Approaches and Simulation Software (Nepveu G., ed). Harrison Hot Springs, British Columbia, Canada, September 8-15, 2002. p. 67



Lemieux H., Beaudoin M., Zhang S.Y., 2001. Characterisation and modelling of knots in black spruce (Picea mariana) logs. Wood Fiber Science 33, 465-475.

Le Moguédec G., Nepveu G., 2004. Using a chain of models to simulate the distribution between quality clusters of a set of boards coming from a sessile oak (Quercus petraea Liebl.) resource. Validation of the simulations. Wood Sci Technol 38, 451-463.

Lindgren O., Lundqvist S.-O., 2000. Geometric transformation (warping) of CT-images - an aid for non-destructive wood density and moisture content measurements. Proceedings of the Fourth International Conference on Image Processing and Scanning of Wood (Klein D.E., Abbott A.L., eds), Mountain Lake, VA, USA, August 21-23. pp. 19-27.

Lindström H., 1997. Fiber length, tracheid diameter, and latewood percentage in Norway spruce: development from pith outwards. Wood and Fiber Science 29, 21-34.

Lindström H., 2002. Intra-tree models of juvenile wood in Norway spruce as an input to simulation software. Silva Fennica 36, 521-34.

Lowell E.C., Todoroki C.L., Thomas E., 2009. Comparing timber and lumber from plantation and natural stands of Ponderosa pine. Western Journal of Applied Forestry 24, 137-143.

Lundgren C., 2000. Predicting log type and knot size category using external log shape data from a 3D log scanner. Scandinavian Journal of Forest research 15, 119-126.
http://dx.doi.org/10.1080/02827580050160556

Lundqvist S.-O., 2002. Efficient wood and fiber characterization-a key factor in research and operation, Annals of Forest Science 59, 491-501.
http://dx.doi.org/10.1051/forest:2002033

Lyhykäinen H.T., Mäkinen H., Mäkelä A., Pastila S., Heikkilä A., Usenius A., 2009. Predicting lumber grade and by-product yields for Scots pine trees. Forest Ecology and Management 258, 146-58.
http://dx.doi.org/10.1016/j.foreco.2009.03.054

Maguire D.A., Kershaw J.A., Han D.W., 1991. Predicting the effects

of silvicultural regime on branch size and crown wood core in

Douglas-fir. Forest Science 37, 1409-28.

colspan="5">

colspan="4" height="100%" width="100%">

Maguire D.A., Moeur

M., Bennett W.S., 1994. Models for describing basal diameter and

vertical-distribution of primary branches in young Douglas-fir.

Forest Ecology and Management 63, 23-55.

href="http://dx.doi.org/10.1016/0378-1127(94)90245-3"

target="_blank">http://dx.doi.org/10.1016/0378-1127(94)90245-3

class="resultB" colspan="4" height="100%"

width="100%">

Maguire D.A., Johnston S.R., Cahill J., 1999.

Predicting branch diameters on second-growth Douglasfir from

tree-level descriptors. Canadian Journal of Forest Research 29,

-40.

target="_blank">http://dx.doi.org/10.1139/x99-147

colspan="5">

colspan="4" height="100%" width="100%">

Mäkelä A., 1997. A

carbon balance model of growth and self-pruning in trees based on

structural relationships. Forest Science 43, 7-24

colspan="5">

colspan="4" height="100%" width="100%">

Mäkelä A., 2002.

Derivation of stem taper from the pipe theory in a carbon balance

framework. Tree Physiology 22, 891-905

href="http://dx.doi.org/10.1093/treephys/22.13.891"

target="_blank">http://dx.doi.org/10.1093/treephys/22.13.891

r>PMid:12204846

class="resultB">

Mäkelä A., Mäkinen H.,

Usenius A., 2002. Predicting 3D stem structure from simple sample

tree measurements. In: IUFRO WP S5.01.04 Fourth workshop

Connection Between Forest Resources and Wood Quality: Modelling

Approaches and Simulation Software Harrison Hot Springs (Nepveu

G., ed). British Columbia, Canada, September 8-15, 2002. pp.

-307.

class="resultB">

colspan="5">

colspan="4" height="100%" width="100%">

Mäkelä A., Mäkinen

H., 2003. Generating 3D sawlogs with a process-based growth model.

Forest Ecology and Management 184, 337-354

href="http://dx.doi.org/10.1016/S0378-1127(03)00152-X"

target="_blank">http://dx.doi.org/10.1016/S0378-1127(03)00152-X

>

class="resultB" colspan="4" height="100%"

width="100%">

Mäkinen H., 1999. Growth, suppression, death,

and selfpruning of branches of Scots pine in southern and central

Finland. Canadian Journal of Forest Research 29, 585-94.

href="http://dx.doi.org/10.1139/x99-026"

target="_blank">http://dx.doi.org/10.1139/x99-026

colspan="5">

colspan="4" height="100%" width="100%">

Mäkinen H., Colin

F., 1998. Predicting branch angle and branch diameter of Scots

pine from usual tree measurements and stand structural

information. Canadian Journal of Forest Research 28,

-96.

target="_blank">http://dx.doi.org/10.1139/x98-141

colspan="5">

colspan="4" height="100%" width="100%">

Mäkinen H.,

Saranpää P., Linder S., 2002. Wooddensity variation of Norway

spruce in relation to nutrient optimization and fibre dimensions.

Canadian Journal of Forest Research 32(2),185-94.

href="http://dx.doi.org/10.1139/x01-186"

target="_blank">http://dx.doi.org/10.1139/x01-186

colspan="5">

colspan="4" height="100%" width="100%">

Mäkinen H., Ojansuu

R., Niemistö P., 2003. Predicting external branch characteristics

of planted silver birch (Betula pendula Roth.) on the basis of

routine stand and tree measurements. Forest Science 49,

-317.

class="resultB" colspan="4" height="100%"

width="100%">

Malinen J., Maltamo M., Verkasalo E., 2003.

Predicting the internal quality and value of Norway spruce trees

by using two non-parametric nearest neighbour methods. Forest

Products Journal 53, 85-94.

class="resultB">

Meredieu C., Colin F.,

Dreyfus P.H., Leban J.-M., 1999. A chain of models from tree

growth to properties of boards for Pinus nigra ssp. laricio Arn.:

simulation using CAPSIS© INRA and WinEpifn© INRA (Nepveu G., ed).

IUFRO WP S5.01.04 Third Workshop Connection Between Silviculture

and Wood Quality through Modelling Approaches and Simulation

Software La Londe-Les-Maures, September 5-12, 1999,

-513.

class="resultB">

colspan="5">

colspan="4" height="100%" width="100%">

Mitchell K.J.,

SYLVER, modelling the impact of silviculture on yield,

lumber value, and economic return. Forest Chronicle 64,

-131.

class="resultB" colspan="4" height="100%"

width="100%">

Moberg L., 1999. Variation of knot size of

Pinus sylvestris in two initial spacing trials. Silva Fennica 33,

-144.

class="resultB" colspan="4" height="100%"

width="100%">

Moberg L., 2001. Models of internal knot

properties for Picea abies. Forest Ecology and Management 147,

-38.

href="http://dx.doi.org/10.1016/S0378-1127(00)00471-0"

target="_blank">http://dx.doi.org/10.1016/S0378-1127(00)00471-0

>

class="resultB" colspan="4" height="100%"

width="100%">

Molteberg D., Høibø O., 2007. Modelling of

wood density and fibre dimensions in mature Norway spruce.

Canadian Journal of Forest Research 37, 1373-89.

href="http://dx.doi.org/10.1139/X06-296"

target="_blank">http://dx.doi.org/10.1139/X06-296

colspan="5">

colspan="4" height="100%" width="100%">

Morales S.,

Guesalaga A., Fernándes M.P., Guarini M., Irarrázaval P., 2004.

Computer reconstruction of pine tree rings using MRI. Magnetic

Resonance Imaging, 22, 403-412.

href="http://dx.doi.org/10.1016/j.mri.2004.01.015"

target="_blank">http://dx.doi.org/10.1016/j.mri.2004.01.015

>PMid:15062936

class="resultB">

width="100%">

Moore J.R., Lyon A.J., Searles G.J., Vihermaa

L.E., 2009. The effects of site and stand factors on the tree and

wood quality of sitka spruce growing in the United Kingdom. Silva

Fennica 43, 383-96.

class="resultB">

Muys B., 1993.

Synecologische evaluatie van regenwormactiviteit en

strooiselafbraak in de bossen van het vlaamse gewest als bijdrage

tot een duurzaam bosbeheer. PHD thesis. [In

Flemish].

class="resultB">

colspan="5">

colspan="4" height="100%" width="100%">

Nicholls J.W.P.,

Within-tree variation in wood characteristics of Pinus

radiata D. Don. Australian Forest Research 16, 313-35.

colspan="5">

colspan="4" height="100%" width="100%">

Nieuwenhuis M.,

The development and validation of pre-harvest inventory

methodologies for timber procurement in Ireland. Silva Fennica 36,

-547

class="resultB">

Nordic Timber Grading Rules For Pine and

Spruce Sawn Timber, 1997. The Assosiation of Finnish Sawmillmen,

Finland, 2nd ed. 64 pp. ISBN: 9173222275.

class="resultB">

colspan="5">

class="resultB">

Nordmark U., 2005. Value recovery and

production control in the forestry-wood chain using simulation

technique. Doctoral thesis. Luleå University of Technology. 51

pp.

colspan="5">

colspan="4" height="100%" width="100%">

Oja J., Wallbäcks

L., Grundberg S., Hägerdal E., Grönlund A., 2003. Automatic

grading of scots pine (Pinus sylvestris L.) sawlogs using an

industrial X-ray log scanner. Computers and Electronics in

Agriculture 41, 63-75.

href="http://dx.doi.org/10.1016/S0168-1699(03)00042-5"

target="_blank">http://dx.doi.org/10.1016/S0168-1699(03)00042-5

>

class="resultB" colspan="4" height="100%"

width="100%">

Ormarsson S., Dahlblom O., Johansson M.,

Finite element study of growth stress formation in wood and

related distortion of sawn timber. Wood Science and Technology 43,

-403

target="_blank">http://dx.doi.org/10.1007/s00226-008-0209-2

>

class="resultB" colspan="4" height="100%"

width="100%">

Osawa A., Ishizuka M., Kanazawa Y., 1991. A

profile theory of tree growth. Forest Ecology and Management

,33-63.

href="http://dx.doi.org/10.1016/0378-1127(91)90118-F"

target="_blank">http://dx.doi.org/10.1016/0378-1127(91)90118-F

class="resultB" colspan="4" height="100%"

width="100%">

Pavel M., Andersson B.O., 2009. A model for

predicting the value of forest stands in various market conditions

in British Columbia. Forestry Chronicle 85, 387-391

colspan="5">

colspan="4" height="100%" width="100%">

Perttunen J.,

Sievänen R., Nikinmaa E., 1998. LIGNUM: a model combining the

structure and the functioning of trees. Ecological Modelling 108,

-198.

href="http://dx.doi.org/10.1016/S0304-3800(98)00028-3"

target="_blank">http://dx.doi.org/10.1016/S0304-3800(98)00028-3

>

class="resultB" colspan="4" height="100%"

width="100%">

Petutschnigg A.J., Katz H., 2005. A loglinear

model to predict lumber quality depending on quality parameters of

logs. Holz als Roh-und Werkstoff 63, 112-7.

href="http://dx.doi.org/10.1007/s00107-004-0537-3"

target="_blank">http://dx.doi.org/10.1007/s00107-004-0537-3

>

class="resultB" colspan="4" height="100%"

width="100%">

Prestemon J.P., 1998. Estimating tree grades

for southern Appalachian natural forest stands. Forest Science 44,

-86.

class="resultB" colspan="4" height="100%"

width="100%">

Philips G.E., Bodig J., Goodman J.R., 1981.

Flow-Grain Analogy. Wood Science 14, 55-64.

colspan="5">

colspan="4" height="100%" width="100%">

Pinto I., Pereira

H., Usenius A., 2003. Analysis of log shape and internal knots in

twenty maritime pine (Pinus pinaster Ait.) stems based on visual

scanning and computer aided reconstruction. Annals of Forest

Science 60, 137-144.

class="resultB">

Pont D., 2003. A model

of secondary growth for radiate pine. M F Sc thesis. University of

Canterbury, Christchurch. 183 pp.

class="resultB">

colspan="5">

class="resultB">

Pont D., Grace J.C., Todoroki C., 1999:

Modelling the influence of radiata pine branching characteristics

on visual timber grade. In: Proceedings of third workshop

«Connection between silviculture and wood quality through

modelling approaches and simulation softwares». Publication

Equippe de recherches sur la quality des bois (Nepveu G., ed).

INRA- Nancy, France. pp. 63-71.

class="resultB">

colspan="5">

colspan="4" height="100%" width="100%">

Poukka O.,

Söderström H., Ekenstedt F., Lundqvist S.-O., 2003. Optimization

of pulpwood assortments – A simulation approach applied by Metsa-

Botnia and STFI. Paper Timber 85(2), 76-79.

colspan="5">

class="resultB">

Schmidt M., 2001. Prognosemodelle für

ausgewählte Holzqualitätsmerkmale wichtiger Baumarten.

Dissertation, Forstwissenschaftliche Fakultät

Georg-August-Universität, Göttingen. 296 pp.

class="resultB">

colspan="5">

colspan="4" height="100%" width="100%">

Schmidt M., 2004.

Simulative Astigkeits- und Qualitätsprognose für

Douglasien-Rundholz. Allg Forstw J-Ztg 175, 49-60. [In German with

English summary].

class="resultB">

width="100%">

Schmidt M., Böckmann T., Nagel, J., 2006. The

use of tree models for silvicultural decision making. In:

Sustainable forest management (Hasenauer H., ed). Springer-Verlag,

Berlin-Heidelberg-New York. pp. 237-261.

href="http://dx.doi.org/10.1007/3-540-31304-4_16"

target="_blank">http://dx.doi.org/10.1007/3-540-31304-4_16

colspan="4" height="100%" width="100%">

Schulgasser K.,

Witztum A., 2007. The mechanism of spiral grain formation in

trees. Wood Science and Technology 41, 133-156.

href="http://dx.doi.org/10.1007/s00226-006-0100-y"

target="_blank">http://dx.doi.org/10.1007/s00226-006-0100-y

>

class="resultB">

Scott I R., 2006. Sylview: a visualization

system for forest management. A thesis - the faculty of the

Graduate School University of Missouri-Columbia. 63

pp.

colspan="5">

colspan="4" height="100%" width="100%">

Seeling U., 2001.

Transformation of plantation forests - Expected wood properties of

Norway spruce [Picea abies (L.) Karst.] within the period of stand

stabilisation. Forest Ecology and Management 151, 195-210.

href="http://dx.doi.org/10.1016/S0378-1127(00)00708-8"

target="_blank">http://dx.doi.org/10.1016/S0378-1127(00)00708-8

>

class="resultB">

Seifert T., 2003. Integration von

Holzqualität und Holzsortierung in behandlungssensitive

Waldwachstumsmodelle. Ph D thesis at the Science Center

Weihenstephan, Technische Universität München. 314 pp. [In German

with English summary and captions].

class="resultB">

colspan="5">

class="resultB">

Seifert T., Pretzsch H., 2002. Modeling

growth and quality of Norway spruce [Picea abies (L.) Karst.] with

the growth simulator SILVA. In: IUFRO WP S5.01.04 Fourth workshop,

Connection Between Forest Resources and Wood Quality: Modelling

Approaches and Simulation Software (Nepveu G., ed). Harrison Hot

Springs, British Columbia, Canada, September 8-15, 2002. pp.

-574.

class="resultB">

colspan="5">

colspan="4" height="100%" width="100%">

Seifert T.,

Breibeck J., Seifert S., Biber, P., 2010. Resin pocket occurrence

in Norway spruce depending on tree and climate variables. Forest

Ecology and Management 260, 302-12.

href="http://dx.doi.org/10.1016/j.foreco.2010.03.024"

target="_blank">http://dx.doi.org/10.1016/j.foreco.2010.03.024

class="resultB" colspan="4" height="100%"

width="100%">

Sellier D., Fourcaud T., 2009. Crown

structure and wood properties, Influence of tree way and response

to high winds. American Journal of Botany 96, 885-896.

href="http://dx.doi.org/10.3732/ajb.0800226"

target="_blank">http://dx.doi.org/10.3732/ajb.0800226
PMid:

class="resultB" colspan="4" height="100%"

width="100%">

Sepulveda P., Oja J., Grönlund A., 2002.

Predicting spiral grain by computed tomography of Norway spruce.

Journal of Wood Science 48, 479-83.

href="http://dx.doi.org/10.1007/BF00766643"

target="_blank">http://dx.doi.org/10.1007/BF00766643

colspan="5">

colspan="4" height="100%" width="100%">

Shinozaki K., Yoda

K., Hozumi K., Kira T., 1964. A quantitative analysis of plant

form: the pipe model theory. I. Basic analyses. Japanese Journal

of Ecology 14, 97-105.

class="resultB">

width="100%">

Skatter S., Kucera B., 2000. Tree breakage

from torsional wind loading due to crown asymmetry. Forest Ecology

and Management 135, 97-103.

href="http://dx.doi.org/10.1016/S0378-1127(00)00301-7"

target="_blank">http://dx.doi.org/10.1016/S0378-1127(00)00301-7

>

class="resultB">

Song T., Usenius A., 2007. InnoSim - a

simulation model of wood conversion chain. Conference proceedings,

Cost Action E44 Conference on Wood Processing Strategy Helsinki,

September, 2007. pp. 95-108.

class="resultB">

colspan="5">

colspan="4" height="100%" width="100%">

TAPIO, 2006.

Recommendations for good silvicultural practice. Tapio Forest

Centre. [In Finnish].

class="resultB">

Teischinger A., 2003.

Wood properties of the raw material: challenges for new processes

and products. In: EMPA, Swiss Federal Laboratories for Materials

Testing and Research, Wood research - Knowledge and concepts for

future demands, 115/50, 95-105; EMPA, CH-8600

Dübendorf

class="resultB">

colspan="5">

colspan="4" height="100%" width="100%">

Telewski F.W.,

Structure and function of flexure wood in Abies fraseri.

Tree Physiology 5, 113-121.

href="http://dx.doi.org/10.1093/treephys/5.1.113"

target="_blank">http://dx.doi.org/10.1093/treephys/5.1.113

PMid:14973003

class="resultB">

Thörnqvist T., 1996.

How to deliver the right piece of wood to the right end-user. In:

Proceedings IUFRO WP S5.01-04. First Workshop «Connection between

silviculture and wood quality through modelling approaches and

simulation softwares» (Nepveu G., ed). Hook, Sweden, June 13-17

Publication Equipe de Reserches sur la Qualite de Bois 1996,

July.

colspan="5">

class="resultB">

Tian X., Cown D., 1996. Radiata pine wood

properties model. In: Workshop Proceedings for the Second Workshop

on Connection between Silviculture and Wood Quality through

Modelling Approaches and Simulation Softwares (Nepveu G., ed).

Berg-en-Dal, Kruger National Park, South Africa, August 26-31, pp.

-103.

colspan="5">

colspan="4" height="100%" width="100%">

Timell T., 1986.

Compression wood in gymnosperms Vol. 1-3. New York.

Springer-Verlag.

class="resultB">

width="100%">

Todoroki C., 1990. Autosaw system for sawing

simulation. New Zealand Journal of Forestry Science 20,

-348.

class="resultB" colspan="4" height="100%"

width="100%">

Todoroki C., Rönnqvist M., 2002. Dynamic

control of timber production at a sawmill with log sawing

optimization. Scandinavian Journal of Forest Research 17,

-89.

target="_blank">http://dx.doi.org/10.1080/028275802317221118

r>

class="resultB" colspan="4" height="100%"

width="100%">

Todoroki C.L., Carson S.D., 2003. Managing

the future forest resource through designer trees. International

Transactions in Operational Research 10, 449-60.

href="http://dx.doi.org/10.1111/1475-3995.00421"

target="_blank">http://dx.doi.org/10.1111/1475-3995.00421

td colspan="5">

colspan="4" height="100%" width="100%">

Todoroki C.L.,

Monserud R.A., Parry D., 2005. Predicting internal lumber grade

from log surface knots: actual and simulated results. Forest

Products Journal 55, 38-47.

class="resultB">

width="100%">

Tomé J., Tomé M., Barreiro S., Paulo J.A.,

Age-independent difference equations for modelling tree and

stand growth. Canadian Journal of Forest Research, 36,

-1630.

target="_blank">http://dx.doi.org/10.1139/x06-065

colspan="5">

colspan="4" height="100%" width="100%">

Tong Q.J., Zhang

S.Y., 2008. Stem form variations in the natural stands of major

commercial softwoods in eastern Canada. Forest Ecology and

Management 256, 1303-10.

href="http://dx.doi.org/10.1016/j.foreco.2008.06.028"

target="_blank">http://dx.doi.org/10.1016/j.foreco.2008.06.028

class="resultB">

Usenius A., 2002. Experiments from

industrial implementations of forest-wood chain models. In: IUFRO

WP S5.01.04 Fourth workshop, Connection Between Forest Resources

and Wood Quality: Modelling Approaches and Simulation Software.

Harrison Hot Springs (Nepveu, G., ed). British Columbia, Canada,

September 8-15, 2002. pp. 600-610.

class="resultB">

colspan="5">

class="resultB">

Vestöl G., Høibo O.A., Moltenberg D.E.,

Sundby H.J., 1997. Modelling knottiness and knot characteristics

of Norway spruce [Picea abies (L.) Karst]. Differences in the

distribution of sound and dead knots between suppressed and

dominant trees. In: Connection between silviculture and wood

quality through modelling approaches and simulation softwares.

Proceedings of IUFRO WP S5.01-04 second workshop, South Africa,

August 26-31, 1996. Equipe de Recherches sur la Qualité des Bois

/7, INRA Nancy.

class="resultB">

colspan="5">

colspan="4" height="100%" width="100%">

Weiskittel A.R.,

Maguire D.A., Monserud R.A., Rose R., Turnblom E.C., 2006.

Intensive management influence on Douglas fir stem form, branch

characteristics, and simulated product recovery. New Zealand

Journal of Forestry Science 36, 293-312

colspan="5">

class="resultB">

Weiskittel A.R., Maguire D.A., Monserud

R.A., 2007. Response of branch growth and mortality to

silvicultural treatments in coastal Douglas-fir plantations:

implications for predicting tree growth. For Ecol Manage 251,

-94.

colspan="5">

colspan="4" height="100%" width="100%">

Wernsdorfer H., Le

Moguedec G., Constant T., Mothe F., Nepveu G., Seeling U., 2006.

Modelling of the shape of red heartwood in beech trees (Fagus

sylvatica L.) based on external tree characteristics. Annals of

Forest Science 63, 905-13.

href="http://dx.doi.org/10.1051/forest:2006074"

target="_blank">http://dx.doi.org/10.1051/forest:2006074

d colspan="5">

class="resultB">

Whiteside I.D., 1990. STANDPAK stand

modelling system for radiata pine. In: New approaches to spacing

and thinning in plantation forestry (James R.N., Tarlton G.L.,

eds). New Zealand Ministry of Forestry, FRI Bulletin No.



colspan="5">

colspan="4" height="100%" width="100%">

Wilhelmsson L.,

Arlinger J., Spängberg K., Lundqvist S.O., Grahn T., Hedenberg Ö.,

Olsson L., 2002. Models for predicting wood properties in stems of

Picea abies and Pinus sylvestris in Sweden. Scandinavian Journal

of Forest Research 17, 330-350.

href="http://dx.doi.org/10.1080/02827580260138080"

target="_blank">http://dx.doi.org/10.1080/02827580260138080

>

class="resultB" colspan="4" height="100%"

width="100%">

Wilson B.F., Archer R.R., 1979. Tree design:

some biological solutions to mechanical problems. BioScience 29,

-298.

target="_blank">http://dx.doi.org/10.2307/1307825

colspan="5">

colspan="4" height="100%" width="100%">

Zhang S.Y., Nepveu

G., Owoundi R.E., 1994. Intratree and intertree variation in

selected wood quality characteristics of European oak (Quercus

petraea and Quercus robur). Canadian Journal of Forest

Research-Revue Canadienne de Recherche Forestiere 24,

-23.

target="_blank">http://dx.doi.org/10.1139/x94-235

colspan="5">

colspan="4" height="100%" width="100%">

Zipse A., Mattheck

C., Gräbe D., Gardiner B., 1998. The effect of wind on the

mechanical properties of the wood of beech (Fagus sylvatica L.)

growing in the Borders of Scotland. Arboricultural Journal 22,

-257.

href="http://dx.doi.org/10.1080/03071375.1998.9747208"

target="_blank">http://dx.doi.org/10.1080/03071375.1998.9747208

>

class="resultB" colspan="4" height="100%"

width="100%">

Zobel B.J., Van Buijtenen J.P., 1989. Wood

variation: its causes and control. Springer, Berlin Heidelberg New

York. pp. 363.

href="http://dx.doi.org/10.1007/978-3-642-74069-5"

target="_blank">http://dx.doi.org/10.1007/978-3-642-74069-5

>




DOI: 10.5424/fs/201019S-9314

Webpage: www.inia.es/Forestsystems