Cross transferability of SSRs to five species of Araucariaceae: a useful tool for population genetic studies in Araucaria araucana

Angela Carolina Moreno, Paula Marchelli, Giovanni Giuseppe Vendramin, Leonardo Ariel Gallo

Abstract


Cross-species amplification of microsatellites is a common procedure to obtain suitable markers to be used in population genetic studies. Primers designed for one (source) species are used to amplify homologous loci in related (target) species. It is expected that phylogenetically close species will share a higher proportion of markers, and genetic distance could be a useful parameter to predict successful transferability between different taxonomic groups. We analyzed twenty-two primer pairs developed for Araucaria angustifolia (Bertol.) Kuntze in five target species of the Araucariaceae family. The results were summarized in vectors of presence and absence of bands and compared through the Jaccard similarity index. Using the sequences of eight published genes, genetic distances between pairs of species were estimated and related to transferability rate using Pearson correlations. Successful transfer rate ranged from 31.8 to 77.3%, being these among the highest reported for plants. The highest transfer rate was observed between the South American species. The transferability was confirmed sequencing seven fragments amplified in A. araucana (Molina) K. Koch, and using the best five to estimate genetic diversity parameters in a natural population of this Andean coniferous.

Keywords


Cross species amplification, pairwise genetic distance, conservation of microsatellite loci, Pehuén.

Full Text:

PDF

References


Barreneche T., Casasoli M., Russell K., Akkak A., Meddour H., Plomion C., Villani F., Kremer A., 2004. Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs). Theoretical and Applied Genetics 108, 558-566. http://dx.doi.org/10.1007/s00122-003-1462-2 PMid:14564395

Bassam B.J., Caetano-Anollés G., Gresshoff P.M., 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry 196, 80-83. http://dx.doi.org/10.1016/0003-2697(91)90120-I

Bekessy S.A., Allnutt T.R., Premoli A.C., Lara A., Ennos R.A., Burgman M.A., Cortes M., Newton A.C., 2002. Genetic variation in the vulnerable and endemic Monkey Puzzle tree (Araucaria araucana (Molina) K. Koch), detected using RAPDs. Heredity 88, 243-249. http://dx.doi.org/10.1038/sj.hdy.6800033 PMid:11920130

Brondani R.P.V., Brondani C., Tarchini R., Grattapaglia D., 1998. Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. TAG Theoretical and Applied Genetics 97, 816-827. http://dx.doi.org/10.1007/s001220050961

Brown R.C., Tsalavouta M., Terzoglou V., Magoulas A., Mcandrew B.J., 2005. Additional microsatellites for Sparus aurata and cross-species amplification within the Sparidae family. Molecular Ecology Notes 5, 605-607. http://dx.doi.org/10.1111/j.1471-8286.2005.01007.x

Csaikl U.M., Bastian H., Brettschneider R., Gauch S., Meir A., Schauerte M., Scholz F., Sperisen C., Vornam B., Ziegenhagen B., 1998. Comparative analysis of different DNA extraction protocols: a fast, universal maxi-preparation of high quality plant DNA for genetic evaluation and phylogenetic studies. Plant Molecular Biology Reporter 16, 69-86. http://dx.doi.org/10.1023/A:1007428009556

Dowling T.E., Moritz C., Palmer J.D., Rieseberg L.H., 1996. Nucleic acids III: analysis of fragments and restriction sites. In: Molecular systematics (Hillis D.M., Moritz C., Mable B.K., eds). Sinauer, Sundeland, Massachusetts, USA. pp. 249-320.

Durand J., Bodenes C., Chancerel E., Frigerio J.-M., Vendramin G., Sebastiani F., Buonamici A., Gailing O., Koelewijn H.-P., Villani F., Mattioni C., Cherubini M., Goicoechea P., Herran A., Ikaran Z., Cabane C., Ueno S., Alberto F., Dumoulin P.-Y., Guichoux E., De Daruvar A., Kremer A., Plomion C., 2010. A fast and cost-effective approach to develop and map ESTSSR markers: oak as a case study. BMC Genomics 11, 570-583. http://dx.doi.org/10.1186/1471-2164-11-570 PMid:20950475 PMCid:3091719

Farjon A., Page C.N. (eds), 1999. Conifers: status survey and conservation action plan. Gland, Switzerland and Cambridge, UK, IUCN.

Feng S., Li W., Huang H., Wang J., Wu Y., 2009. Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis). Molecular Breeding 23, 85-97. http://dx.doi.org/10.1007/s11032-008-9216-0

Fisher P.J., Richardson T.E., Gardner R.C., 1998. Characteristics of single- and multi-copy microsatellites from Pinus radiata. TAG Theoretical and Applied Genetics 96, 969-979. http://dx.doi.org/10.1007/s001220050828

Fitzsimmons N.N., Moritz C., Moore S.S., 1995. Conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution. Molecular Biology and Evolution 12, 432-440. PMid:7739385

Gallo L., Izquierdo F., Sanguinetti L.J., Pinna A., Siffredi G., Ayesa J., López C., Pelliza A., Strizler N., Gonzales Peñalba M., Maresca L., Chauchard L., 2004. Los recursos genéticos silvícolas de Araucaria araucana en Argentina. Desafíos de la ordenación de los recursos genéticos silvícolas para contribuir a la subsistencia: ejemplos de Argentina y Brazil. [on line]. Available in http://www2.bioversityinternational.org/publications/1140/. [21 Jan, 2011].

Guidugli M.C., Guerrieri Accoronii K.A., Mestrineri M.A., Betioli Conteli E.P., Martínez C.A., Alzate-Marin A.L., 2010. Genetic characterization of 12 heterologous microsatellite markers for the giant tropical tree Cariniana legalis (Lecythidaceae). Genetics and Molecular Biology 33, 131-135. http://dx.doi.org/10.1590/S1415-47572010000100022 PMid:21637616 PMCid:3036079

Hall T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41, 95-98.

Heesacker A., Kishore V.K., Gao W., Tang S., Kolkman J.M., Gingle A., Matvienko M., Kozik A., Michelmore R.M., Lai Z., Rieseberg L.H., Knapp S.J., 2008. SSRs and INDELs mined from the sunflower EST database: abundance, polymorphisms, and cross-taxa utility. Theoretical and Applied Genetics 117, 1021-1029. http://dx.doi.org/10.1007/s00122-008-0841-0 PMid:18633591

Hendre P.S., Phanindranath R., Annapurna V., Lalremruata A., Aggarwal R.K., 2008. Development of new genomic microsatellite markers from robusta coffee (Coffea canephora Pierre ex A. Froehner) showing broad cross-species transferability and utility in genetic studies. BMC Plant Biology 8, 51-70. http://dx.doi.org/10.1186/1471-2229-8-51 PMid:18447947 PMCid:2396172

Hill R.S., Scriven L.J., 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86, 175-198. http://dx.doi.org/10.1016/0034-6667(94)00149-E

Holmen J., Vøllestad L.A., Jakobsen K.S., Primmer C.R., 2005. Cross-species amplification of zebrafish and central stoneroller microsatellite loci in six other cyprinids. Journal of Fish Biology 66, 851-859. http://dx.doi.org/10.1111/j.0022-1112.2005.00637.x

Isagi Y., Suhandono S., 1997. PCR primers amplifying microsatellite loci of Quercus myrsinifolia Blume and their conservation between oak species. Molecular Ecology 6, 897-899. http://dx.doi.org/10.1111/j.1365-294X.1997.tb00147.x PMid:9301079

Jamieson A., Taylor S.C.S., 1997. Comparisons of three probability formulae for parentage exclusion. Animal Genetics 28, 397-400. http://dx.doi.org/10.1111/j.1365-2052.1997.00186.x PMid:9616104

Kayser M., Ritter H., Bercovitch F., Mrug M., Roewer L., Nürnberg P., 1996. Identification of highly polymorphic microsatellites in the rhesus macaque Macaca mulatta by cross-species amplification. Molecular Ecology 5, 157-159. http://dx.doi.org/10.1111/j.1365-294X.1996.tb00302.x PMid:9147691

Kijas J.M.H., Fowler J.C.S., Thomas M.R., 1995. An evaluation of sequence tagged microsatellite site markers for genetic analysis within Citrus and related species. Genome 38, 349-355. http://dx.doi.org/10.1139/g95-045 PMid:7774802

Kumar S., Tamura K., Nei M., 1993. MEGA: molecular evolutionary genetics analysis, version 1.01. University Park, TPS University.

Kupper C., Burke T., Szekely T., Dawson D., 2008. Enhanced cross-species utility of conserved microsatellite markers in shorebirds. BMC Genomics 9, 502-522. http://dx.doi.org/10.1186/1471-2164-9-502 PMid:18950482 PMCid:2588463

Liewlaksaneeyanawin C., Ritland C.E., Elkassaby Y.A., Ritland K., 2004. Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theoretical and Applied Genetics 109, 361-369. http://dx.doi.org/10.1007/s00122-004-1635-7 PMid:15045175

Lin G., Chang A., Yap H., Yue G., 2008. Characterization and cross-species amplification of microsatellites from the endangered Hawksbill turtle (Eretmochelys imbricate). Conservation Genetics 9, 1071-1073. http://dx.doi.org/10.1007/s10592-007-9459-z

Liu N., Zhu Y., Wie Z., Chen J., Qb W., Jian S., Zhou D., Shi J., Yang Y., Zhong Y., 2009. Phylogenetic relationships and divergence times of the family Araucariaceae based on the DNA sequences of eight genes. Chinese Science Bulletin 54, 2648-2655. http://dx.doi.org/10.1007/s11434-009-0373-2

Marchelli P., Baier C., Mengel C., Ziegenhagen B., Gallo L., 2010. Biogeographic history of the threatened species Araucaria araucana (Molina) K. Koch and implications for conservation: a case study with organelle DNA markers. Conservation Genetics 11, 951-963. http://dx.doi.org/10.1007/s10592-009-9938-5

Mottura M.C., Finkeldey R., Verga A.R., Gailing O., 2005. Development and characterization of microsatellite markers for Prosopis chilensis and Prosopis flexuosa and cross-species amplification. Molecular Ecology Notes 5, 487-489. http://dx.doi.org/10.1111/j.1471-8286.2005.00965.x

Nei M., 1971. Interspecific gene differences and evolutionary time estimated from electrophoretic data on protein identity. The American Naturalist 105, 385-398. http://dx.doi.org/10.1086/282732

Patreze C., Tsai S., 2010. Intrapopulational genetic diversity of Araucaria angustifolia (Bertol.) Kuntze is different when assessed on the basis of chloroplast or nuclear markers. Plant Systematics and Evolution 284, 111-122. http://dx.doi.org/10.1007/s00606-009-0238-9

Peakall R., Ebert D., Scott L.J., Meagher P.F., Offord C.A., 2003. Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Molecular Ecology 12, 2331-2343. http://dx.doi.org/10.1046/j.1365-294X.2003.01926.x PMid:12919472

Peakall R., Smouse P.E., 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288-295. http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x

Primmer C.R., Painter J.N., Koskinen M.T., Palo J.U., Merilä J., 2005. Factors affecting avian crossspecies microsatellite amplification. Journal of Avian Biology 36, 348-360. http://dx.doi.org/10.1111/j.0908-8857.2005.03465.x

R-Development-Core-Team, 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rallo P., Tenzer I., Gessler C., Baldoni L., Dorado G., Martín A., 2003. Transferability of olive microsatellite loci across the genus Olea. Theoretical and Applied Genetics 107, 940-946. http://dx.doi.org/10.1007/s00122-003-1332-y PMid:12827252

Rico C., Rico I., Hewitt G., 1996. 470 million years of conservation of microsatellite loci among fish species. Proceedings of the Biological Sciences 263, 549-557. http://dx.doi.org/10.1098/rspb.1996.0083 PMid:8677258

Robertson A., Hollingsworth P.M., Kettle C.J., Ennos R.A., Gardner M.F., 2004. Characterization of nuclear microsatellites in New Caledonian Araucaria species. Molecular Ecology Notes 4, 62-63. http://dx.doi.org/10.1046/j.1471-8286.2003.00569.x

Rohlf F.J., 2001. NTSYS: numerical taxonomy and multivariate analysis system version 2.1. Setauket. E. Software. PMCid:64842

Rossetto M., Harriss F.C.L., Mclauchlan A., Henry R.J., Baverstock P.R., Lee L.S., 2000. Interspecific amplification of tea tree (Melaleuca alternifolia-Myrtaceae) microsatellite loci-potential implications for conservation studies. Australian Journal of Botany 48, 367-373. http://dx.doi.org/10.1071/BT98084

Rossetto M., 2001. Sourcing of SSR markers from related plant species. In: Plant genotyping: the DNA fingerprinting of plants (Henry R.J., ed). CAB International, Wallingford, UK. pp. 211-224. http://dx.doi.org/10.1079/9780851995151.0211

Ruiz E., González F., Torres-Díaz C., Fuentes G., Mardones M., Stuessy T., Samuel R., Becerra J., Silva M., 2007. Genetic diversity and differentiation within and among Chilean populations of Araucaria araucana (Araucariaceae) based on allozyme variability. Taxon 56, 1221-1219. http://dx.doi.org/10.2307/25065913

Salgueiro F., Caron H., De Souza M.I.F., Kremer A., Margis R., 2005. Characterization of nuclear microsatellite loci in South American Araucariaceae species. Molecular Ecology Notes 5, 256-258. http://dx.doi.org/10.1111/j.1471-8286.2005.00899.x

Scott L.J., Shepherd M., Henry R.J., 2003. Characterization of highly conserved microsatellite loci in Araucaria cunninghamii and related species. Plant Systematics and Evolution 236, 115-123. http://dx.doi.org/10.1007/s00606-002-0217-x

Scott L.J., 2004. Implications of evolutionary history and population structure for the analysis of quantitative trait loci in the ancient conifer Araucaria cunninghamii. PhD thesis. Lismore, NSW, Southern Cross University. pp. 155.

Scott L., Shepherd M., Nikles D., Henry R., 2005. Low efficiency of pseudotestcross mapping design was consistent with limited genetic diversity and low hetero- zygosity in hoop pine (Araucaria cunninghamii, Araucariaceae). Tree Genetics and Genomes 1, 124-134. http://dx.doi.org/10.1007/s11295-005-0022-0

Schmeda-Hirschmann G., Astudillo L., Rodríguez J., Theoduloz C., Yáñez T., 2005. Gastroprotective effect of the Mapuche crude drug Araucaria araucana resin and its main constituents. Journal of Ethnopharmacology 101, 271-276. http://dx.doi.org/10.1016/j.jep.2005.04.027 PMid:15985351

Schmidt A.B., Ciampi A.Y., Guerra M.P., Nodari R.O., 2007. Isolation and characterization of microsatellite markers for Araucaria angustifolia (Araucariaceae). Molecular Ecology Notes 7, 340-342. http://dx.doi.org/10.1111/j.1471-8286.2006.01602.x

Stefenon V., Gailing O., Finkeldey R., 2004. Genetic structure of Araucaria angustifolia (Araucariaceae) populations in Brazil: implications for the in situ conservation of genetic resources. Plant Biology 9, 516-525. http://dx.doi.org/10.1055/s-2007-964974 PMid:17401807

Stefenon V.M., 2007. Rotas de migração da Araucária. Ciência Hoje. 39, 59-61.

Steinkellner H., Lexer C., Turetschek E., Glössl J., 1997. Conservation of (GA)n microsatellite loci between Quercus species. Molecular Ecology 6, 1189-1194. http://dx.doi.org/10.1046/j.1365-294X.1997.00288.x

Tamura K., Dudley J., Nei M., Kumar S., 2007. Mega4: molecular evolutionary genetics analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution 24, 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738

Van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P., 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535-538. http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x

Ven W.T.G., Mcnicol R J., 1996. Microsatellites as DNA markers in Sitka spruce. Theoretical and Applied Genetics 93, 613-617. http://dx.doi.org/10.1007/BF00417956

Zhang D.X., Hewitt G.M., 2003. Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Molecular Ecology 12, 563-584. http://dx.doi.org/10.1046/j.1365-294X.2003.01773.x PMid:12675814

Zhang Y., Sledge M.K., Bouton J.H., 2007. Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers. Theoretical and Applied Genetics 114, 1367-1378. http://dx.doi.org/10.1007/s00122-007-0523-3 PMid:17356868 PMCid:1950584

Zucchi M.I., Brondani R.P.V., Pinheiro J.B., Brondani C., Vencovsky R., 2002. Transferability of microsatellite markers from Eucalyptus spp. to Eugenia dysenterica (Myrtaceae family). Molecular Ecology Notes 2, 512-513. http://dx.doi.org/10.1046/j.1471-8286.2002.00297.x




DOI: 10.5424/fs/2011202-11449

Webpage: www.inia.es/Forestsystems