The effect of water availability on plastic responses and biomass allocation in early growth traits of Pinus radiata D. Don

  • S. E. Espinoza Dryland Technological Center. Catholic University of Maule, Talca
  • C. R. Magni Faculty of Forestry and Nature Conservancy. University of Chile. Santiago
  • V. A. Martínez Faculty of Veterinary and Livestock. University of Chile. Santiago
  • M. Ivković CSIRO Plant Industry. PO Box 1600 ACT 2601. Canberra

Abstract

Aim of study: The aim of the study was to assess the effect of water availability on plastic responses and biomass allocation in early growth traits of Pinus radiata D. Don.

Area of study: Seedlings of 69 families of P. radiata belonging to five different sites in Central Chile, ranging from coastal range to fothills of the Andes, were grown in controlled conditions to evaluate differences in response to watering.

Material and methods: The seedlings were subjected to two watering regimes: well-watered treatment, in which seedlings were watered daily, and water stress treatment in which seedlings were subjected to three cyclic water deficits by watering to container capacity on 12 days cycles each. After twenty-eight weeks root collar diameter, height, shoot dry weight (stem + needles), root dry weight, total dry weight, height/diameter ratio and root/shoot ratio were recorded. Patterns and amounts of phenotypic changes, including changes in biomass allocation, were analyzed.

Main results: Families from coastal sites presented high divergence for phenotypic changes, allocating more biomass to shoots, and those families from interior sites presented low phenotypic plasticity, allocating more biomass to roots at the expense of shoots. These changes are interpreted as a plastic response and leads to the conclusion that the local landrace of P. radiata in Chile originating from contrasting environments possess distinct morphological responses to water deficit which in turn leads to phenotypic plasticity.

Research highlights: Families belonging to sandy soil sites must be considered for tree breeding in dry areas, selecting those with high root: shoot ratio.

Key words: early testing; environmental interaction; ontogeny; plasticity index; water stress.

Downloads

Download data is not yet available.

References

Albert F, 1900. Las dunas o sean las arenas volantes, voladeros, arenas muertas, invasión de las arenas, playas i médanos del centro de Chile. Comprendiendo el litoral desde el norte de la provincia del Aconcagua hasta el límite sur de la de Arauco. Cervantes. Santiago, Chile.

Atzmon N, Moshe Y, Schiller G, 2004. Ecophysiological response to severe drought in Pinus halepensis Mill. trees of two provenances. Plant Ecology 171: 15-22. http://dx.doi.org/10.1023/B:VEGE.0000029371.44518.38

Bahamondez C, Martín M, Müller-Using S, Pugin A, Vergara G, Rojas Y, 2010. Estudio de la variabilidad de los bosques de Chile al cambio climático. V Congreso Chileno de Ciencias Forestales. Diálogos entre la Ciencia y la Sociedad. Temuco, Chile, Octubre 2010. p: 47.

Behera N, Nanjundiah V, 2004. Phenotypic plasticity can potentiate rapid evolutionary change. Journal of Theoretical Biology 226: 177-184. http://dx.doi.org/10.1016/j.jtbi.2003.08.011 PMid:14643187

Balaguer L, Martínez-Ferri E, Valladares F, Pérez-Corona ME, Baquedano FJ, Castillo FJ, Manrique E, 2001. Population divergence in the plasticity of the response of Quercus coccifera to the light envionment. Functional Ecology 15: 124-135. http://dx.doi.org/10.1046/j.1365-2435.2001.00505.x

Bloom AJ, Chapin FS, Mooney HA, 1985. Resource limitation in plants – an economic analogy. Annual Review of Eco-logy and Systematics 16: 363-392.

Bradshaw AD, 1965. Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics 13: 115-155. http://dx.doi.org/10.1016/S0065-2660(08)60048-6

Calamassi R, Della Rocca G, Falusi M, Paoletti E, Strati S, 2001. Resistance to water stress in seedlings of eight European provenances of Pinus halepensis Mill. Annals of Forestry Science 58: 663-672. http://dx.doi.org/10.1051/forest:2001153

Camus P, 2006. Ambiente, bosques y gestión forestal en Chile 1541-2005. Diban LOM. Santiago, Chile.

Coleman JS, McConnaughay KDM, Ackerly DD, 1994. Interpreting phenotypic variation in plants. Trends in Ecology and Evolution 9: 187-191. http://dx.doi.org/10.1016/0169-5347(94)90087-6

CONAMA, 2009. Análisis de vulnerabilidad del sector silvoagropecuario, recursos hídricos y edáficos de Chile frente a escenarios de cambio climático. Capítulo: "Impactos productivos en el sector silvoagropecuario de Chile frente a escenarios de cambio climático". Gobierno de Chile, CONAMA-ODEPA-FIA. Ejecutor: Centro de Agricultura y Medio Ambiente (AGRIMED) Facultad de Ciencias Agronómicas. Universidad de Chile.

Corcuera L, Gil-Pelegrin E, Notivol E, 2010. Phenotypic plasticity in Pinus pinaster ™13C: environment modulates genetic variation. Annals of Forest Science 67: 812. http://dx.doi.org/10.1051/forest/2010048

Chambel MR, Climent J, Alía R, 2007. Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes. Annals of Forest Science 64: 87-97. http://dx.doi.org/10.1051/forest:2006092

Danusevicius D, Persson B, 1998. Phenology of natural swedish populations of Picea abies as compared with introduced seed sources. Forest Genetics 5(4): 211-220.

Dean CA, Sands R, 1983. Stomatal response to evaporative demand and soil water status in families of Radiata pine. Australian Forest Research 13: 179-182.

Ennos R, Worrell R, Malcolm DC, 1998. The genetic management of native species in Scotland. Forestry 71: 1-23. http://dx.doi.org/10.1093/forestry/71.1.1

Espinoza S, 2012. Caracterización de la raza local de Pinus radiata D. Don en Chile en relación a su diversidad genética y respuesta temprana frente a una restricción hídrica. Tesis doctoral. Universidad de Chile. 115 pp.

Gerding V, Schlatter J, 1995. Variables y factores del sitio de importancia para la productividad de Pinus radiata D. Don en Chile. Bosque 16(2): 39-56.

Huber A, Trecaman R, 2002. Efecto de la variabilidad interanual de las precipitaciones sobre el desarrollo de plantaciones de Pinus radiata (D. Don) en la zona de los arenales VIII Región, Chile. Bosque 23(2): 43-49.

Hood JV, Libby WJ, 1980. A clonal study of intraspecific variability in Radiata pine I. Cold and animal damage. Australian Forest Research 10: 9-20.

INFOR, 2010. Anuario Forestal 2010. Instituto Forestal, Chile. Boletín Estadístico N° 128. 134 pp.

Kaufman SR, Smouse PE, 2001. Comparing indigenous and introduced populations of Melaleuca quinquenervia (Cav.) Blake: response of seedlings to water and pH levels. Oecologia 127: 487-494. http://dx.doi.org/10.1007/s004420000621

Kleinschmit J, Racz J, Weissgerber H, Dietze W, Dieterich H, Dimpflmeier R, 1974. Ergeb-nisse aus dem internationalen Douglasien-herkunftversuch von 1970 in der Bundesrepublik Deutschland. Silvae Genetica 23: 167- 176.

Klinkhamer PGL, Jong TJD, Meelis E, 1990. How to test for proportionality in the reproductive effort of plants. American Naturalist 135: 291-300. http://dx.doi.org/10.1086/285045

Lei Y, Yin CH, Li CH, 2006. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiologia Plantarum 127: 182-191. http://dx.doi.org/10.1111/j.1399-3054.2006.00638.x

Lewis NB, Ferguson IS, 1993. Management of Radiata pine. In: The Chilean radiata pine sector (Sutton WR, Donald MG, Lisboa HB, eds). Inkata Press. Melbourne, Australia. pp: 365-379.

Lortie CJ, Aarssen LW, 1996. The specialization hypothesis for phenotypic plasticity in plants. International Journal of Plant Sciences 157: 484-487. http://dx.doi.org/10.1086/297365

Merchant A, Callister A, Arndt S, Tausz M, Adams M, 2007. Contrasting physiological responses of six Eucalyptus species to water deficit. Annals of Botany 100: 1507-1515. http://dx.doi.org/10.1093/aob/mcm234 PMid:17905722 PMCid:2759221

Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, Van Kleunen M, 2010. Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15: 684-692. http://dx.doi.org/10.1016/j.tplants.2010.09.008 PMid:20970368

Nielsen UB, 1994. Genetic variation in Sitka Spruce (Picea sitchensis (Bong.) Carr.) with respect to height growth, stem form and frost hardiness – investigated on the basis of Danish provenance, progeny and clonal field experiments. Forskingsserien. Danish Landscape and Forest Research Institute, Hørsholm, Denmark 11: 1-330.

Nielsen UB, 1999. Comparison of Danish first generation or later seed sources with direct imports – examples from Sitka spruce, Nordmanns fir and Noble fir. Aktuelt Fra Skogforskningen 3: 11.

Pigliucci M, Schlichting CD, 1996. Reaction norms of Arabidopsis. IV. Relationships between plasticity and fitness. Heredity 76: 427-436. http://dx.doi.org/10.1038/hdy.1996.65 PMid:8666543

Pigliucci M, Murren CJ, Schlichting CD, 2006. Phenotypic plasticity and evolution by genetic assimilation. The Journal of Experimental Biology 209: 2362-2367. http://dx.doi.org/10.1242/jeb.02070 PMid:16731812

Poorter H, Nagel O, 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology 27: 595-607. http://dx.doi.org/10.1071/PP99173_CO

Rowell DM, Ades PK, Tausz M, Arndt SK, Adams MA, 2009. Lack of genetic variation in tree ring ™13C suggests a uniform, stomatally-driven response to drought stress across Pinus radiata genotypes. Tree Physiology 29: 191-198. http://dx.doi.org/10.1093/treephys/tpn015 PMid:19203944

Samson DA, Werk KS, 1986. Size-dependent effects in the analysis of reproductive effort in plants. American Naturalist 127: 667-680. http://dx.doi.org/10.1086/284512

SAS Institute. 1999. SAS/STAT user's guide, Version 8. SAS Institute INC. Cary, NC. 3848 pp.

Scheiner SM, 1993. Genetics and evolution of phenotypic plasticity. Annual Review of Ecology and Systematics 24: 35-68. http://dx.doi.org/10.1146/annurev.es.24.110193.000343

Schlichting CD, Pigliucci M, 1998. Phenotypic evolution - A reaction norm perspective. Sinauer Associates. Sunderland, MA.

Simpson JA, Ades PK, 1990. Screening Pinus radiata families and clones for disease and pest insect resistance. Australian Forestry 53: 194-199.

Squire R, Neales T, Loveys B, Attiwill P, 1988. The influence of water deficits on needle conductance, assimilation rate and abscisic acid concentration of seedlings of Pinus radiata D. Don. Plant Cell and Environment 11: 13-19. http://dx.doi.org/10.1111/j.1365-3040.1988.tb01771.x

Thompson JD, 1991. Phenotypic plasticity as a component of evolutionary change. Trends in Ecolgy and Evolution 6: 246-249. http://dx.doi.org/10.1016/0169-5347(91)90070-E

Toro J, Gessel S, 1999. Radiata pine plantations in Chile. New Forests 18(1): 33-44. http://dx.doi.org/10.1023/A:1006597823190

Via S, 1993. Adaptive phenotypic plasticity – Target or byproduct of selection in a variable environment. American Naturalist 142: 352-365. http://dx.doi.org/10.1086/285542 PMid:19425981

Wright S, Mcconnaughay K, 2002. Interpreting phenotypic plasticity: the importance of ontogeny. Plant Species Biology 17: 119-131. http://dx.doi.org/10.1046/j.1442-1984.2002.00082.x

Zhang X, Zang R, Li CH, 2004. Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress. Plant Science 166: 791-797. http://dx.doi.org/10.1016/j.plantsci.2003.11.016

Published
2013-04-01
How to Cite
Espinoza, S. E., Magni, C. R., Martínez, V. A., & Ivković, M. (2013). The effect of water availability on plastic responses and biomass allocation in early growth traits of Pinus radiata D. Don. Forest Systems, 22(1), 3-14. https://doi.org/10.5424/fs/2013221-02084
Section
Research Articles