Cork oak (Quercus suber L.) wood hygroscopic properties and dimensional stability

  • S. Leal Instituto Superior de Agronomia Universidade Técnica de Lisboa
  • V. B Sousa Instituto Superior de Agronomia Universidade Técnica de Lisboa
  • H. Pereira Instituto Superior de Agronomia Universidade Técnica de Lisboa

Abstract

Cork oak (Quercus suber L.) wood has a potential for high value uses because of its strength and aesthetic properties but one obstacle is the lack of knowledge of the wood-water relations. Variations in wood equilibrium moisture content, density and dimensions were studied at air temperatures of 22°C and 27°C (representing acclimatized homes and summer non-acclimatized homes, respectively) varying from 80% to 30% of relative humidity. For indoor uses (22-27°C, 50-65% of relative humidity), the wood equilibrium moisture content ranged 12-17% and these values are recommended for the final commercial drying of cork oak wood. The fibre saturation point averaged 27%. Total volumetric shrinkage at 22°C-27°C averaged 12%, the linear shrinkage 8.1-8.5% and 3.6-3.6%, respectively in tangential and radial directions. Anisotropy averaged 2.3. Wood density at 12% moisture content ranged 0.63 to 0.67 g/cm3. The higroscopicity obtained was 0.003. The average tangential differential shrinkage was 0.32 for both temperatures and the average radial differential shrinkage was 0.14 and 0.15, at 22°C and 27°C respectively. The shrinkage factor was 0.90 cm3/g and 0.82 cm3/g, at 22°C and 27°C respectively. Differences between temperatures were only statistically significant at 80-70% of relative humidity.

Downloads

Download data is not yet available.

References

Almeida G. 2006. Influence de la structure du bois sur ses proprietés physico-mécaniques à des teneurs en humidité élevées. Dissertation thesis. Faculté de Foresterie et de Géomatique, Université Laval, Québec.

Almeida G, Hernández RE. 2006. Changes in physical properties of tropical and temperate hardwoods below and above the fiber saturation point. Wood Sci Technol 40, 599-613. http://dx.doi.org/10.1007/s00226-006-0083-8

Badel E, Perré P. 2007. The shrinkage of oak predicted from its anatomical pattern:validation of a cognitive model. Trees 21, 111-120. http://dx.doi.org/10.1007/s00468-006-0105-z

Carvalho A. 1996. Madeiras Portuguesas - Estrutura anatómica, Propriedades e Utilizações, Vol I. Instituto Florestal, Lisbon, Portugal. 339 pp.

Carvalho A. 1997. Madeiras Portuguesas – Estrutura anatómica, Propriedades e Utilizações, Vol II. Direcção-Geral das Florestas, Lisbon, Portugal. 415 pp.

Costa A, Pereira H, Oliveira A. 2001. Dendroclimatological approach to diameter growth in cork oak adult trees under cork production. Trees 15, 438-443. http://dx.doi.org/10.1007/s004680100119

Costa A, Pereira H, Oliveira A. 2002. Influence of climate on the seasonality of radial growth of cork oak during a cork production cycle. Ann For Sci 59, 429-437. http://dx.doi.org/10.1051/forest:2002017

Chafe SC. 1987. Collapse, volumetric shrinkage, specific gravity and extractives in Eucalyptus and other species. Part 2: The influence of wood extractives. Wood Sci Technol 21, 27-41.

Choong ET, Achmadi SS. 1991. Effect of extractives on moisture sorption and shrinkage in tropical woods. Wood Fiber Sci 23, 185-196.

Cruz de Leon J. 1994. Notes on the physical characteristics of the wood of four species of Quercus from Nuevo Leon, Mexico. Inv Agr Sis Rec For 3, 91-98.

Fortes MA, Rosa ME, Pereira H. 2004. A Cortiça. IST Press, Lisbon, Portugal. 259 pp.

García-Esteban L, Gril J, De Palacios-De Palacios P, Guindeo-Casasús A. 2005. Reduction of wood higroscopicity and associated dimensional response by repeated humidity cycles. Ann For Sci 62, 275-284. http://dx.doi.org/10.1051/forest:2005020

Hernández RE. 2007. Swelling properties of hardwoods asaffected by their extraneous substances, wood density,and interlocked grain. Wood Fiber Sci 39, 146-158.

Joly P, More-Chevalier E. 1980. Théorie, pratique & économiedu séchage des bois. Editions H. Vial, Dourdan,France. 204 pp.

Knapic S, Louzada JL, Leal S, Pereira H. 2007. Radialvariation of wood density components and ring width incork oak trees. Ann For Sci 64, 211-218. http://dx.doi.org/10.1051/forest:2006105

Knapic S, Louzada JL, Leal S, Pereira H. 2008. Within andbetween-tree variation of wood density components incork oak trees in two sites in Portugal. Forestry 81, 465-473. DOI: 10.1093/forestry/cpn012. http://dx.doi.org/10.1093/forestry/cpn012

Kolin B, Janezic TS. 1996. The effect of temperature, density,and chemical composition upon the limit of hygroscopicityof wood. Holzforschung 50, 263-268. http://dx.doi.org/10.1515/hfsg.1996.50.3.263

Leal S, Sousa VB, Pereira H. 2006. Variability of cell biometryin the wood of cork oak (Quercus suber L.). WoodSci Technol 40, 585-597. http://dx.doi.org/10.1007/s00226-006-0073-x

Leal S, Sousa VB, Pereira H. 2007. Radial variation in corkoak (Quercus suber L.) wood vessel size and distribution.Wood Sci Technol Wood Sci Technol 41, 339-350. DOI:10.1007/s00226-006-0112-7. http://dx.doi.org/10.1007/s00226-006-0112-7

Leal S, Nunes E, Pereira H. 2008. Cork oak (Quercus suberL.) wood growth and vessel characteristics variations inrelation to climate and cork harvesting. Eur J For Res 127,33-41. DOI: 10.1007/s10342-007-0180-8. http://dx.doi.org/10.1007/s10342-007-0180-8

Noack D, Schwab E, Bartz A. 1973. Characteristics for ajudgment of the sorption and swelling behavior of wood.Wood Sci Technol 7, 218-236. http://dx.doi.org/10.1007/BF00355552

Pereira H. 2007. Cork: Biology, Production and Uses. ElsevierPubl., Amsterdam, The Netherlands. 336 pp.

Pereira H, Lopes F, Graça J (1996). The evaluation of thequality of cork planks by image analysis. Holzforschung50:111-115. http://dx.doi.org/10.1515/hfsg.1996.50.2.111

Pereira H, Tomé M. 2004. Cork oak. In: Encyclopaedia ofForest Sciences (Burley J, Evans J, Youngquist JA,eds). Academic Press, Amsterdam, The Netherlands.pp. 613-620. http://dx.doi.org/10.1016/B0-12-145160-7/00278-7

Popper R, Niemz P, Eberle G. 2005. Untersuchungen zumsorptions- und quellungsverhalten von thermisch behandeltemholz. Holz Roh Werk 63, 135-168. http://dx.doi.org/10.1007/s00107-004-0554-2

Simpson W, TenWolde A. 1999. Physical Properties andMoisture Relations of Wood - Wood as an EngineeringMaterial. (Gen. Tech. Rep. FPL–GTR–113). U.S. Departmentof Agriculture, Forest Service, Forest ProductsLaboratory, Madison, WI, USA. pp.3/1-3/24.

Skaar C. 1988. Wood-water relations. Springer Verlag, Berlin,Germany. 283 pp. http://dx.doi.org/10.1007/978-3-642-73683-4 PMid:3392232

Svensson S. 1996. Strain and shrinkage force in wood underkiln drying conditions. II: Strain, shrinkage and stressmeasurements under controlled climate conditions. Holzforschung50, 463-469. http://dx.doi.org/10.1515/hfsg.1996.50.5.463

Tsoumis G. 1991. Science and Technology of Wood. VanNostrand Reinhold, New York, USA. 494 pp.

Vázquez J, Pereira H. 2005. Mixed models to estimate treeoven-dried cork weight in Central and Southern Portugal.Forest Ecol Manag 213, 117-132. http://dx.doi.org/10.1016/j.foreco.2005.03.047

Walker JCF. 2006. Primary wood Processing: Principlesand practice (2nd Ed), Springer, The Netherlands.596 pp.

Wang S-Y, Wang H-L. 1999. Effects of moisture contentand specific gravity on static bending propertiesand hardness of six wood species. J Wood Science 45,127-133. http://dx.doi.org/10.1007/BF01192329

Zobel BJ, van Buijtenen JP. 1989. Wood Variation - Itscauses and Control. Springer-Verlarg, Berlin, Germany.363 pp. http://dx.doi.org/10.1007/978-3-642-74069-5

Published
2012-11-28
How to Cite
Leal, S., Sousa, V. B., & Pereira, H. (2012). Cork oak (Quercus suber L.) wood hygroscopic properties and dimensional stability. Forest Systems, 21(3), 355-363. https://doi.org/10.5424/fs/2012213-02104
Section
Research Articles