Effects of inoculation with Azospirillum brasilense on the quality of Prosopis juliflora seedlings

J. A. Domínguez Núñez, D. Muñoz, R. Planelles, J. M. Grau, F. Artero, A. Anriquez, A. Albanesi

Abstract


Inoculation of mycorrhizal fungi and rhizobacteria in plants can improve their growth and physiological status, which could be particularly important for agricultural and forestry plants used for the revegetation of arid areas. Prosopis juliflora is a forest pioneer species that is drought resistant and has multiple uses (fodder, shade and shelter for livestock; timber and firewood, live fences and windbreaks in agroforestry systems). Azospirillum brasilense is a rhizobacterium that improves the growth of many agricultural crops. The hypothesis of this study was that P. juliflora seedlings produced in the nursery can respond positively to inoculation with A. brasilense CECT 590. Five months after inoculation, we examined the growth, water relations (osmotic potential at full turgor, osmotic potential at zero turgor, and the modulus of elasticity at full turgor), and concentration and content of macronutrients (N, P, K, Ca and Mg) in the seedlings. Subsequently, a trial was conducted to analyse root growth potential. A. brasilense CECT 590 inoculation caused an osmotic adjustment in P. juliflora seedlings but decreased the elasticity of the cell walls. Inoculation with A. brasilense CECT 590 significantly improved plant growth due in part to an increase of N concentration in the seedlings. A. brasilense CECT 590 inoculation also caused an increase in the root growth potential. The increased growth of P. juliflora seedlings inoculated with A. brasilense was probably caused by more than one mechanism. Inoculation with A. brasilense at the nursery may be a suitable technique for producing improved seedling material for restoration purposes.


Full Text:

PDF

References


Altabe SG, Inon-de-Iannino N, de-Mendoza D, Ugalde RA. 1994. New osmoregulated b(1-3), b(1-6)-glucosyltransferase (s) in Azospirillum brasilense. J. Bacteriol. 176, 4890-4898. PMid:8051002 PMCid:196324

Alvarez MI, Sueldo RJ, Barassi CA. 1996. Effect of Azospirillum on coleoptile growth in wheat seedlings under water stress. Cereal. Res. Commun. 24, 101-107.

Bacilio M, Hernandez JP, Bashan Y. 2006. Restoration of giant cardon cacti in barren desert soil amended with common compost and inoculated with Azospirillum brasilense. Biol. Fertil. Soils. 43, 112-119. http://dx.doi.org/10.1007/s00374-006-0072-y

Baldani VLD, Baldani JI, Döbereiner J. 1983. Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can. J. Microbiol. 29, 924-929. http://dx.doi.org/10.1139/m83-148

Bashan Y, Holguin G. 1997. Azospirillum plant relationships: environmental and physiological advances. Can. J. Microbiol. 43, 103-121. http://dx.doi.org/10.1139/m97-015

Bashan Y. 1999. Interactions of Azospirillum spp. in soils: a review. Biol. Fertil. Soils. 29, 246-256. http://dx.doi.org/10.1007/s003740050549

Bashan Y, Gonzalez LE. 1999. Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl. Microbiol. Biotechnol. 51, 262-266. http://dx.doi.org/10.1007/s002530051391

Bashan Y, Rojas A, Puente ME. 1999. Improved establishment and development of three cactus species inoculated with Azospirillum brasilense transplanted into disturbed urban desert soil. Can. J. Microbiol. 45, 441-451. Bashan Y, Holguin G, de-Bashan LE. 2004. Azospirillumplant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can. J. Microbiol 50, 521-577 http://dx.doi.org/10.1139/w04-035 PMid:15467782

Bashan Y, Salazar B, Puente EM. 2009. Responses of native legume desert trees used for reforestation in the Sonoran Desert to plant growth-promoting microorganisms in screen house. Biol. Fertil. Soils. 45, 655-662. http://dx.doi.org/10.1007/s00374-009-0368-9

Bashan Y, de-Bashan LE. 2010. How the plant growth-promoting bacterium Azospirillum promotes plant growth - a critical assessment. Adv. Agron. 108, 77-136. http://dx.doi.org/10.1016/S0065-2113(10)08002-8

Benlloch-González M, Arquero O, Fournier JM, Barranco D, Benlloch M. 2008. K+ starvation inhibits water-stressinduced stomatal closure. J. Plant. Physiol. 165, 623–630. http://dx.doi.org/10.1016/j.jplph.2007.05.010 PMid:17723253

Bhojvaid PP and Timmer VR. 1998. Soil dynamics in an age sequence of Prosopis juliflora planted for sodic soil restoration in India. Forest. Ecol. Manag., 106 (2-3): 181- 193. http://dx.doi.org/10.1016/S0378-1127(97)00310-1

Bowman WD, Roberts SW. 1985. Seasonal changes in tissue elasticity in chaparral shrubs. Physiol. Plant. 65, 233-236. http://dx.doi.org/10.1111/j.1399-3054.1985.tb02388.x

Bradbury M, Ahmad R. 1990. The effect of silicon on the growth of Prosopis juliflora growing in saline soil. Plant. Soil 125, 71-74. http://dx.doi.org/10.1007/BF00010745

Burdett AN. 1987. Understanding root growth capacity: theoretical considerations in assessing planting stock quality by means of root growth tests. Can. J. For. Res. 17, 768-775. http://dx.doi.org/10.1139/x87-123

Burdman S, Jurkevitch E, Soria-Díaz ME, Gil Serrano AM, Okon Y. 2000. Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation. FEMS Microbiol. Lett. 189, 259-264. http://dx.doi.org/10.1111/j.1574-6968.2000.tb09240.x PMid:10930748

Caravaca F, Alguacil MM, Azcón R, Parladé J, Torres P, Roldán A. 2005. Establishment of two ectomycorrhizal shrub species in a semiarid site after in situ amendment with sugar beet, rock phosphate, and Aspergillus níger. Microb. Ecol. 49, 73-82. http://dx.doi.org/10.1007/s00248-003-0131-y PMid:15690228

Carrillo-Garcia A, Leon de la Luz JL, Bashan Y, Bethlenfalvay GJ. 1999. Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert. Restor. Ecol. 7, 321-335. http://dx.doi.org/10.1046/j.1526-100X.1999.72027.x

Clinch NJL, Bennison JJ, Paterson RT. 1993. Use of Trees by Livestock 1: Prosopis. UK Natural Resources Institute. 17p.

Cohen E, Okon Y, Kigel J, Nur I, Henis Y. 1980. Increase in dry weigth and total nitrogen content in Zea mays and Setaria italica associated with nitrogen-fixing Azospirillum spp. Plant. Physiol. 66, 746-749. http://dx.doi.org/10.1104/pp.66.4.746 PMid:16661514 PMCid:440715

Chanway CP. 1997. Inoculation of tree roots with plant growth promoting soil bacteria: An emerging technology for reforestation. Forest Sci. 43, 99-112.

Cheung YNS, Tyree MT, Dainty J. 1975. Water relations parameters on single leaves obtained in a pressure bomb and some ecological interpretations. Can. J.Bot. 53, 1342- 1346. http://dx.doi.org/10.1139/b75-162

Christiansen-Weniger C. 1994. Para-nodule induction in maize with indole-acetic-acid (IAA) and its infection with ammonia excreting Azospirillum brasilense. In Nitrogen- Fixation with Non-Legumes (Hegazi, Ed., N.A. et al.). American University Cairo Press, Cairo, Egypt, pp. 526–536.

Duponnois R, Founoune H, Masse D, Pontanier R. 2005. Inoculation of Acacia holosericea with ectomycorrhizal fungi in a semiarid site in Senegal: growth response and influences on the mycorrhizal soil infectivity after 2 years plantation. For. Ecol. Manage. 207, 351-362. http://dx.doi.org/10.1016/j.foreco.2004.10.060

Fallik E, Okon Y, Epstein E, Goldman A, Fischer M. 1989. Identification and quantification of IAA and IBA in Azospirillum brasilense inoculated maize roots. Soil Biol. Biochem. 21, 147-153. http://dx.doi.org/10.1016/0038-0717(89)90024-2

Horemans S, de Koninck K, Heuray J, Hermanss R, Vlassak K. 1986. Production of plant growth substances by Azospirillum sp. and other rhizosphere bacteria. Symbiosis 2, 341-346.

Itzigsohn R, Burdman S, Okon Y, Zaady E, Yonatan R, Perevolotsky A. 2000. Plant-growth promotion in natural pastures by inoculation with Azospirillum brasilense under suboptimal growth conditions. Arid Soil Res. Rehab. 13, 151-158. http://dx.doi.org/10.1080/089030600263076

Jones MM, Turner, NC. 1980. Osmotic adjustment in expanding and fully expanded leves of sunlower in response to water deficits. Aust. J. Plant Physiol. 7, 181-192. http://dx.doi.org/10.1071/PP9800181

Kapulnik Y, Feldman M, Okon Y, Henis Y. 1985. Contribution of nitrogen fixed by Azospirillum to the N nutrition of spring wheat in Israel. Soil Biol. Biochem. 17, 509-515. http://dx.doi.org/10.1016/0038-0717(85)90018-5

Levanony H, Bashan Y. 1988. Enhancement of cell division in wheat root tips and growth of root elongation zone induced by Azospirillum brasilense Cd. Can. J. Bot. 67, 2213-2216. http://dx.doi.org/10.1139/b89-281

Leyva LA, Bashan, Y. 2008. Activity of two catabolic enzymes of the phosphogluconate pathway in mesquite roots inoculated with Azospirillum brasilense Cd. Plant Physiol. Bioch. 46, 898-904 http://dx.doi.org/10.1016/j.plaphy.2008.05.011 PMid:18619846

Marulanda A, Barea JM, Azcon R. 2006. An Indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microbiol. Ecol. 52, 670-678. http://dx.doi.org/10.1007/s00248-006-9078-0 PMid:17075734

Murthy MG, Ladha JK. 1988. Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant Soil 108, 281-285. http://dx.doi.org/10.1007/BF02375660

Okon Y, Lavandera-Gonzalez C. 1994. Agronomic applications of Azospirillum: An evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem. 26; 12, 1591- 1601. http://dx.doi.org/10.1016/0038-0717(94)90311-5

Omay SH, Schmidt WA, Martin P, Bangerth F. 1993. Indoleacetic acid production by the rhizosphere bacterium Azospirillum brasilense Cd under in vitro conditions. Can. J. Microbiol. 39, 187-192. http://dx.doi.org/10.1139/m93-026

Pacovsky RS, Paul EA, Bethlenfalvay GJ. 1985. Nutrition of sorghum plants fertilized with nitrogen or inoculated with Azospirillum brasilense. Plant Soil 85,145-148. http://dx.doi.org/10.1007/BF02197807

Probanza A, Mateos JL, Lucas GJA, Ramos B, de Felipe MR, Gutierrez MFJ. 2001. Effects of Inoculation with PGPR Bacillus and Pisolithus tinctorius on Pinus pinea L. Growth, Bacterial Rhizosphere Colonization, and Mycorrhizal Infection. Microb. Ecol. 41, 140-148. PMid:12032619

Puente ME, Holguin G, Glick BR, Bashan Y. 1999. Rootsurface colonization of black mangrove seedlings by Azospirillum halofraeferens and Azospirillum brasilense in seawater. FEMS Microbiol. Ecol. 29, 283-292. http://dx.doi.org/10.1111/j.1574-6941.1999.tb00619.x

Rennie RJ, Thomas JB. 1987. 15N-determined effect on inoculation with N2 fixing bacteria on nitrogen assimilation in Western Canadian wheats. Plant Soil 100, 213-223. http://dx.doi.org/10.1007/BF02370942

Rincón A, Ruíz-Díez B, Fernández-Pascual M, Probanza A, Pozuelo JM, de Felipe MR. 2006. Afforestation of degraded soils with Pinus halepensis Mill.: Effects of inoculation with selected microorganisms and soil amendment on plant growth, rhizospheric microbial activity and ectomycorrhizal formation. Appl. Soil Ecol. 34, 42-51. http://dx.doi.org/10.1016/j.apsoil.2005.12.004

Riou N, Poggi MC, Le Rudulier D. 1991. Characterization of an osmoregulated periplasmic glycine betaine-binding protein in Azospirillum brasilense sp7. Biochimie, 73, 1187-1193. http://dx.doi.org/10.1016/0300-9084(91)90003-J

Robichaux RH. 1984. Variation in the tissue water relations of two sympatric Hawaiian Dubautia species and their natural hybrid. Oecologia (Berlin) 65, 75-81. http://dx.doi.org/10.1007/BF00384465

Schank SC, Weier KL, Macrae IC. 1981. Plant yield and nitrogen content of a digitgrass in response to Azospirillum inoculation. Appl. Environ. Microbiol. 41, 342-345. PMid:16345707 PMCid:243696

Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA. 1965. Sap pressure in vascular plants. Science 148, 339-346. http://dx.doi.org/10.1126/science.148.3668.339 PMid:17832103

Simpson DG, Ritchie GA. 1997. Does RGP predict field performance. A debate. New Forests 13(1-3), 253- 277. http://dx.doi.org/10.1023/A:1006542526433

Smith RL, Schank SC, Milam JR, Baltensperger AA, 1984. Responses of Sorghum and Pennisetum species to the N2-fixing bacterium Azospirillum brasilense. Appl. Environ. Microbiol. 47, 1331-1336. PMid:16346571 PMCid:240237

Tarrand JJ, Krieg NR, Döbereiner J. 1978. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 24, 967-980. http://dx.doi.org/10.1139/m78-160 PMid:356945

Tien TM, Gaskins MH, Hubbell DH. 1979. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Environ. Microbiol. 37, 1016-1024. PMid:16345372 PMCid:243341

Tyree M, Hammel HT. 1972. The measurement of the turgor pressure and the water relations of plants by the pressure technique. J. Exp. Bot. 23, 267-282. http://dx.doi.org/10.1093/jxb/23.1.267

Tyree M, Jarvis PG. 1982. Water in tissues and cells. In: Encyclopedia of Plant Physiology, New Series, Vol. 12B, Physiological Plant Ecology II. Eds. O L Lange, P S Nobel, C B Osmond and H Ziegler. Pp 36-77. Springer- Verlag, Berlin.

Villar-Salvador P, Caña L, Peñuelas J, Carrasco I, Domínguez S, Renilla I. 1997. Relaciones hídricas y potencial de formación de raíces en plántulas de Pinus halepensis Mill. sometidas a diferentes niveles de endurecimientos por estrés hídrico. In Monographs of the Spanish Society of Forest Science, 4, 81-92.

Zimmer W, Roeebn K, Bothe H, 1988. An alternative explanation for plant growth promotion by bacteria of the genus Azospirillum. Planta 176, 333-342.

http://dx.doi.org/10.1007/BF00395413




DOI: 10.5424/fs/2012213-02135

Webpage: www.inia.es/Forestsystems