Biomass models to estimate carbon stocks for hardwood tree species

R. Ruiz-Peinado Gertrudix, G. Montero, M. del Rio

Abstract


To estimate forest carbon pools from forest inventories it is necessary to have biomass models or biomass expansion factors. In this study, tree biomass models were developed for the main hardwood forest species in Spain: Alnus glutinosa, Castanea sativa, Ceratonia siliqua, Eucalyptus globulus, Fagus sylvatica, Fraxinus angustifolia, Olea europaea var. sylvestris, Populus x euramericana, Quercus canariensis, Quercus faginea, Quercus ilex, Quercus pyrenaica and Quercus suber. Different tree biomass components were considered: stem with bark, branches of different sizes, above and belowground biomass. For each species, a system of equations was fitted using seemingly unrelated regression, fulfilling the additivity property between biomass components. Diameter and total height were explored as independent variables. All models included tree diameter whereas for the majority of species, total height was only considered in the stem biomass models and in some of the branch models. The comparison of the new biomass models with previous models fitted separately for each tree component indicated an improvement in the accuracy of the models. A mean reduction of 20% in the root mean square error and a mean increase in the model efficiency of 7% in comparison with recently published models. So, the fitted models allow estimating more accurately the biomass stock in hardwood species from the Spanish National Forest Inventory data.


Full Text:

PDF

References


Antonio N., Tomé M., Tomé J., Soares P., Fontes L. 2007. Effect of the tree, stand and site variables of the allometry of Eucalyptus globulus tree biomass. Can J For Res 37: 895-906. http://dx.doi.org/10.1139/X06-276

Balboa-Murias M.A., Rodriguez-Soalleiro R., Merino A., Alvarez-Gonzalez J.G., 2006a. Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. For Ecol Manage 237: 29-38.

Balboa-Murias M.A., Rojo A., Alvarez-Gonzalez J.G., Merino A., 2006b. Carbon and nutrient stocks in mature Quercus robur L. stands in NW Spain. Ann For Sci 63: 557-565. http://dx.doi.org/10.1051/forest:2006038

Bi H.Q., Turner J., Lambert M.J., 2004. Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees-Struct Funct 18: 467-479. http://dx.doi.org/10.1007/s00468-004-0333-z

Blanco J.A., Imbert J.B., Castillo F.J., 2006. Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees. For Ecol Manage 237: 342-352.

Bravo F., Álvarez-González, J.G., Río, M., Barrio, M., Bonet, J.A., Bravo-Oviedo, A., Calama, R., Castedo-Dorado, F., Crecente-Campo, F., Condes, S., Diéguez-Aranda, U., González-Martínez, S.C., Lizarralde, I., Nanos, N., Madrigal, A., Martínez-Millán, F.J., Montero, G., Ordóñez, C., Palahi, M., Piqué, M., Rodriguez, F., Rodríguez-Soalleiro, R., Rojo, A., Ruiz-Peinado, R., Sánchez-González, M., Trasobares, A., Vázquez-Piqué, J. 2011. Growth and yield models in Spain: historical overview, contemporary examples and perspectives. Forest Systems 20: 315-328.

Bravo F., Bravo-Oviedo A., Díaz Balteiro L., 2008. Carbon sequestration in Spanish Mediterranean forest under two management alternatives: a modeling approach. Eur J For Res 127: 225-234. http://dx.doi.org/10.1007/s10342-007-0198-y

Brown S., 2002. Measuring carbon in forests: current status and future challenges. Environ Pollut 116: 363-372. http://dx.doi.org/10.1016/S0269-7491(01)00212-3

Cairns M.A., Brown S., Helmer E.H., Baumgardner G.A., 1997. Root biomass allocation in the world’s upland forests. Oecologia 111: 1-11. http://dx.doi.org/10.1007/s004420050201

Canadell J., Riba M., Andrés P., 1988. Biomass equations for Quercus ilex L. in the Montseny Massif, northeastern Spain. Forestry 61: 137-147. http://dx.doi.org/10.1093/forestry/61.2.137

Canadell J., Roda F., 1991. Root biomass of Quercus ilex in a montane Mediterranean forest. Can J For Res 21: 1771- 1778. http://dx.doi.org/10.1139/x91-245

Cañellas I., Sánchez-González, M., Bogino, S.M., Adame, P., Herrero, C., Roig, S., Tomé, M., Paulo, J.A., Bravo, F., 2008. Silviculture and carbon sequestration in Mediterranean oak forests. In: Bravo F., LeMay V., Jandl R., Gadow K.v. (Eds.), Managing Forest Ecosystems: The Challenge of Climate Change. Springer, pp. 317-338.

Carvalho J.P., Parresol B.R., 2003. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For Ecol Manage 179: 269-276.

Cunia T., Briggs R.D., 1984. Forcing additivity of biomass tables: some empirical results. Can J For Res 14: 376-384. http://dx.doi.org/10.1139/x84-067

Drexhage M., Colin F., 2001. Estimating root system biomass from breast-height diameters. Forestry 74: 491-497. http://dx.doi.org/10.1093/forestry/74.5.491

Fang J.Y., Chen A.P., Peng C.H., Zhao S.Q., Ci L., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292: 2320-2322. http://dx.doi.org/10.1126/science.1058629 PMid:11423660

Federici S., Vitullo M., Tulipano S., De Lauretis R., Seufert G., 2008. An approach to estimate carbon stocks change in forest carbon pools under the UNFCCC: the Italian case. iForest - Biogeosciences and Forestry 1: 86-95.

Joosten R., Schumacher J., Wirth C., Schulte A., 2004. Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany. For Ecol Manage 189: 87-96.

Kurz W., Beukema S., Apps M. 1996. Estimation of root biomass and dynamics for the carbon budget model of the Canadian forest sector. Can J For Res 26: 1973-1979. http://dx.doi.org/10.1139/x26-223

Lebaube S., Le Goff N., Ottorini J.M., Granier A., 2000. Carbon balance and tree growth in a Fagus sylvatica stand. Ann For Sci 57: 49-61. http://dx.doi.org/10.1051/forest:2000100

Lehtonen A., Makipaa R., Heikkinen J., Sievanen R., Liski J., 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For Ecol Manage 188: 211-224.

Loomis R.M., Phares R.E., Crosby J.S., 1966. Estimating foliage and branchwood quantities in Shortleaf Pine. For Sci 12: 30-39.

López-Rodríguez F., Atanet C.P., Blázquez F.C., Celma A.R., 2009. Spatial assessment of the bioenergy potential of forest residues in the western province of Spain, Cáceres. Biomass Bioenerg 33: 1358-1366.

MARM, 2010. Anuario de Estadísticas Forestales 2009. Ministerio de Medio Ambiente y Medio Rural y Marino. Available in http://www.marm.es/es/biodiversidad/temas/montes-y-politica-forestal/estadisticas-forestales [3 October, 2011]. [In Spanish]

Merino A., Balboa M.A., Rodriguez-Soalleiro R., Álvarez- Gonzalez J.G., 2005. Nutrient exports under different harvesting regimes in fast-growing forest plantations in southern Europe. For Ecol Manage 207: 325-339.

Mokany K., Raison R.J., Prokushkin A.S., 2006. Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol 12: 84-96. http://dx.doi.org/10.1111/j.1365-2486.2005.001043.x

Montero G., Ortega C., Cañellas I., Bachiller A., 1999. Productividad aérea y dinámica de nutrientes en una población de Pinus pinaster Ait. sometida a distintos regímenes de claras. Inv Agrar-Sist Recursos Fores Fuera de Serie: 175-206.

Montero G., Ruiz-Peinado R., Muñoz M., 2005. Producción de biomasa y fijación de CO2 por los bosques españoles. Monografías INIA, Serie Forestal 13. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ministerio de Educación y Ciencia, Madrid, España, 270 pp. [In Spanish]

Návar J., 2009. Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For Ecol Manage 257: 427-434.

Parresol B.R., 1999. Assessing tree and stand biomass: A review with examples and critical comparisons. For Sci 45: 573-593.

Parresol B.R., 2001. Additivity of nonlinear biomass equations. Can J For Res 31: 865-878. http://dx.doi.org/10.1139/x00-202

Peichl M., Arain M.A., 2007. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. For Ecol Manage 253: 68-80.

Pérez-Cruzado C., Merino A., Rodríguez-Soalleiro R., 2011. A management tool for estimating bioenergy production and carbon sequestration in Eucalyptus globulus and Eucalyptus nitens grown as short rotation woody crops in north-west Spain. Biomass Bioenerg 35: 2839-2851. http://dx.doi.org/10.1016/j.biombioe.2011.03.020

Rapp M., Santa Regina I., Rico M., Gallego H.A., 1999. Biomass, nutrient content, litterfall and nutrient return to the soil in Mediterranean oak forests. For Ecol Manage 119: 39-49.

Ruiz-Peinado R., Río M., Montero G., 2011. New models for estimating the carbon sink capacity of Spanish softwood species. Forest Systems 20: 176-188.

Saint-Andre L., M’bou A.T., Mabiala A., Mouvondy W., Jourdan C., Roupsard O., Deleporte P., Hamel O., Nouvellon Y., 2005. Age-related equations for above- and belowground biomass of a Eucalyptus hybrid in Congo. For Ecol Manage 205: 199-214.

Santa Regina I., Tarazona T., Calvo R., 1997. Aboveground biomass in a beech forest and a scots pine plantation in the Sierra de la Demanda area of northern Spain. Ann Sci For 54: 261-269. http://dx.doi.org/10.1051/forest:19970304

Sas Institute Inc., 2004. SAS/ETS(R) 9.1 User’s guide. In. SAS Institute Inc., Cary, N.C.

Shaiek O., Loustau D., Trichet P., Meredieu C., Bachtobji B., Garchi S., El Aouni M.H., 2011. Generalized biomass equations for the main aboveground biomass components of maritime pine across contrasting environments. Ann For Sci 68:443-452. http://dx.doi.org/10.1007/s13595-011-0044-8

Sixto-Blanco H., Hernández M.J., Barrio Anta M., Carrasco J., Cañellas I., 2007. Plantaciones del género Populus para la producción de biomasa con fines energéticos: revisión. Inv Agrar-Sist Recursos Fores 16: 277-294.

Somogyi Z., Cienciala E., Makipaa R., Muukkonen P., Lehtonen A., Weiss P., 2007. Indirect methods of largescale forest biomass estimation. Eur J For Res 126: 197-207. http://dx.doi.org/10.1007/s10342-006-0125-7

Teobaldelli M., Somogyi Z., Migliavacca M., Usoltsev V.A., 2009. Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. For Ecol Manage 257: 1004-1013.

Tobin B., Cermak J., Chiatante D., Danjon F., Iorio A.D., Dupuy L., Eshel A., Jourdan C., Kalliokoski T., Laiho R., Nadezhdina N., Nicoll B., Pages L., Silva J., Spanos I., 2007. Towards developmental modelling of tree root systems. Plant Biosyst 141: 481-501. http://dx.doi.org/10.1080/11263500701626283

Vanninen P., Mäkelä A., 2000. Needle and stem wood production in Scots pine (Pinus sylvestris) trees of different age, size and competitive status. Tree Physiol 20: 527–533. http://dx.doi.org/10.1093/treephys/20.8.527 PMid:12651433

Wirth C., Schumacher J., Schulze E.D., 2004. Generic biomass functions for Norway spruce in Central Europe - a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol 24: 121-139.




DOI: 10.5424/fs/2112211-02193

Webpage: www.inia.es/Forestsystems