Effect of putative mitoviruses on in vitro growth of Gremmeniella abietina isolates under different laboratory conditions

C. Romeralo Tapia, L. Botella, O. Santamaría, J. Diez

Abstract


Mitoviruses have been found in several forest pathogens (i.e. Cryphonectria parasitica, Gremmeniella abietina), and because they have been shown to reduce the virulence of host fungi there is a growing interest in studying their use as a biocontrol. This study was carried out to test the effect of temperature (5°C, 15°C, 25°C and 35°C), pH (4, 5, 7 and 9) and osmotic potential (–0.6, –1.2, –1.8 and –2.4 MPa) on the mycelial growth of seven G. abietina isolates under controlled laboratory conditions. Four of the isolates hosted mitoviruses and three of them did not. During the experiment, mycelial growth was recorded every week for a period of 8 weeks. Results showed no differences in growth behavior between mitovirus infected and non-infected isolates when placed under different pH modifications. However, the mitovirus-infected isolates presented larger mycelial growth than the mitovirus-free ones when at the fungi’s optimal growing temperature of 15°C. When growing at certain osmotic potentials (–0.6 and –1.8 MPa) a reduction in growth of the mitovirus-infected isolates was observed. The results of this experiment suggest that mycelial growth among non-infected isolates and isolates naturally infected by mitovirus vary under different culture conditions, thus providing further insight into the effects of mitovirus on Gremmeniella abietina isolates.


Full Text:

PDF ()

References


Aoki N, Moriyama H, Kodama M, Arie T, Teraoka T, Fukuhara T. 2009. A novel mycovirus associated with four double-stranded RNAs affects host fungal growth in Alternaria alternata. Virus Res 140, 179-187. http://dx.doi.org/10.1016/j.virusres.2008.12.003 PMid:19118588

Armengol J, Alaniz S, Vicent A, Beltran R, Abad-Campos P, Perez-Sierra A, Garcia-Jimenez J, Ben Salem I, Souli M, Boughalleb N. 2011. Effect of dsRNA on growth rate and reproductive potential of Monosporascus cannonballus. Fungal Biol 115, 236-244.

http://dx.doi.org/10.1016/j.funbio.2010.12.007 PMid:21354530

Boland G, 2004. Fungal viruses, hypovirulence, and biological control of Sclerotinia species. Can J Plant Pathol 26, 6-18. http://dx.doi.org/10.1080/07060660409507107

Botella L, Tuomivirta TT, Kaitera J, Navarro VC, Diez JJ, Hantula J. 2010. Spanish population of Gremmeniella abietina is genetically unique but related to type A in Europe. Fungal Biol 114, 778-789. http://dx.doi.org/10.1016/j.funbio.2010.07.003 PMid:20943187

Botella L, Tuomivirta TT, Hantula J, Diez JJ. 2012a. Presence of viral dsRNA molecules in the Spanish population of Gremmeniella abietina. Journal of Agricultural Extension and Rural Development 4 (9), 211-213.

Botella L, Tuomivirta TT, Vervuur S, Diez JJ, Hantula J. 2012b. Occurence of two different species of mitoviruses in the European race of Gremmeniella abietina var abietina, both hosted by the genetically unique Spanish population. Fungal Biol 116, 872-882. http://dx.doi.org/10.1016/j.funbio.2012.05.004 PMid:22862915

Brasier CM. 1983. A cytoplasmically transmitted disease of Ceratocystis ulmi. Nature 305, 220-223. http://dx.doi.org/10.1038/305220a0

Carlile MJ, Watkinson SC, Gooday GW. 2001. The Fungi 2nd ed. Academic press, London, UK. PMCid:1731361

Castro M, Kramer K, Valdivia L, Ortiz S, Castillo A. 2003. A double-stranded RNA mycovirus confers hypovirulenceassociated traits to Botrytis cinerea. FEMS Microbiol Lett 228, 87-91. http://dx.doi.org/10.1016/S0378-1097(03)00755-9

Chu Y, Jeon J, Yea S, Kim Y, Yun S, Lee Y, Kim K. 2002. Double-stranded RNA mycovirus from Fusarium graminearum. Appl Environ Microb 68, 2529-2534. http://dx.doi.org/10.1128/AEM.68.5.2529-2534.2002 PMid:11976130 PMCid:127521

Davis DJ, Burlak C, Money NP. 2000. Osmotic pressure of fungal compatible osmolytes. Mycol Res 104 (7), 800- 804. http://dx.doi.org/10.1017/S0953756299002087

Deng F, Xu R, Boland GJ. 2003. Hypovirulence associated double-stranded RNA from Sclerotinia homoeocarpa is conspecific with Ophiostoma novo-ulmi mitovirus 3a-Ld. Phytopathology 93, 1407-1414. http://dx.doi.org/10.1094/PHYTO.2003.93.11.1407 PMid:18944069

Deng F, Boland GJ. 2004. A satellite RNA of Ophiostoma novo-ulmi mitovirus 3a in hypovirulent isolates of Sclerotinia homoeocarpa. Phytopathology 94, 917-923. http://dx.doi.org/10.1094/PHYTO.2004.94.9.917 PMid:18943067

Donaubauer E. 1972. Distribution and hosts of Scleroderris lagerbergii in Europe and North America. Eur J Forest Pathol 2, 6-11. http://dx.doi.org/10.1111/j.1439-0329.1972.tb00336.x

Dorworth CE. 1979. Influence of inoculum concentration on infection of red pine seedings by Gremmeniella-abietina. Phytopathology 69, 298-300. http://dx.doi.org/10.1094/Phyto-69-298

Ghabrial SA, Suzuki N. 2009 Viruses of plant pathogenic fungi. Annu Rev Phytopathol 47, 353-384. http://dx.doi.org/10.1146/annurev-phyto-080508-081932 PMid:19400634

Hamelin R, Ouellette G, Bernier L. 1993. Identification of Gremmeniella-abietina races with Random Amplified Polymorphic DNA markers. Appl Environ Microb 59, 1752-1755. PMid:16348951 PMCid:182156

Hantula J, Muller MM, 1997. Variation within Gremmeniella abietina in Finland and other countries as determined by Random Amplified Microsatellites (RAMS). Mycol Res 101, 169-175. http://dx.doi.org/10.1017/S0953756296002225

Hausner G, Belkhiri A, Klassen GR. 2000. Phylogenetic analysis of the small subunit ribosomal RNA gene of the hyphochytrid Rhizidiomyces apophysatus. Can J Botany 78, 124-128.

Hellgren M, Hogberg N. 1995. Ecotypic Variation of Gremmeniella-abietina in Northern Europe - Disease patterns reflected by DNA variation. Can J Botany 73, 1531-1539. http://dx.doi.org/10.1139/b95-166

Herrero N, Perez-Sanchez R, Oleaga A, Zabalgogeazcoa I. 2011. Tick pathogenicity, thermal tolerance and virus infection in Tolypocladium cylindrosporum. Ann Appl Biol 159, 192-201. http://dx.doi.org/10.1111/j.1744-7348.2011.00485.x

International Committee on Taxonomy of Viruses Database (ICTV) In: Virus taxonomy, Classification and nomenclature of viruses, Ninth Report (2011) Ed: King AMQ, Adams MJ, Carstens EB and Lefkowitz EJ. Elsevier, USA.

Imolehin ED, Grogan RG, Duniway JM. 1980. Effect of temperature and moisture tension on growth, sclerotial production, germination and infection by Sclerotinia minor. Phytopathology 70, 1153-1157 http://dx.doi.org/10.1094/Phyto-70-1153

Kaitera J, Jalkanen R. 1992. Disease history of Gremmeniella- abietina in a Pinus-sylvestris Stand. Eur J Forest Pathol 22, 371-378. http://dx.doi.org/10.1111/j.1439-0329.1992.tb00309.x

Kaitera J, Jalkanen R. 1996. In vitro growth of Gremmeniella abietina isolates (European race) at different temperatures. Scand J Forest Res 11, 159-163. http://dx.doi.org/10.1080/02827589609382924

Lee K, Yu J, Son M, Lee Y, Kim K. 2011. Transmission of Fusarium boothii mycovirus via protoplast fusion causes hypovirulence in other phytopathogenic fungi. PloS ONE 6, e21629. http://dx.doi.org/10.1371/journal.pone.0021629 PMid:21738738 PMCid:3126848

Lira-Méndez K, Mayek-Pérez N. 2006. Potencial osmótico variable en el crecimiento in vitro y la patogenicidad en frijol (Phaseolus vulgaris L.) de Fusarium spp. Rev Mex Fitopatol 24 (2), 88-97.

Marquez LM, Redman RS, Rodriguez RJ, Roossinck MJ. 2007. A virus in a fungus in a plant: three-way simbiosis required for themal tolerance. Science 315, 543-515. http://dx.doi.org/10.1126/science.1136237 PMid:17255511

Martínez J. 1933. Una grave micosis del pino observada por primera vez en España. Bol Soc Española de Historia Natural 33, 25-29.

McCabe P, Pfeiffer P, Van Alfen N. 1999. The influence of dsRNA viruses on the biology of plant pathogenic fungi. Trends Microbiol 7, 377-381. http://dx.doi.org/10.1016/S0966-842X(99)01568-1

Morris TJ, Dodds JA. 1979. Isolation and analysis of doublestranded- RNA from virus-infected plant and fungal tissue. Phytopathology 69, 854-858. http://dx.doi.org/10.1094/Phyto-69-854

Müller Mm, Kantola R, Kitunen V. 1994. Combining sterol and fatty acid profiles for the characterization of fungi. Mycol Res 98, 593-603. http://dx.doi.org/10.1016/S0953-7562(09)80404-8

Osaki H, Nakamura H, Nomura K, Matsumoto N, Yoshida K. 2005. Nucleotide sequence of a mitochondrial RNA virus from the plant pathogenic fungus, Helicobasidium mompa Tanaka. Virus Res 107, 39-46. http://dx.doi.org/10.1016/j.virusres.2004.06.010 PMid:15567032

Palmero D, de Cara M, Iglesias C, Ruiz G, Tello JC. 2008. Effects of water potential on spore germination and viability of Fusarium species. J Ind Microbiol Biotechnol 35,1405-1409.

Park Y, Chen X, Punja ZK. 2006. Molecular and biological characterization of a mitovirus in Chalara elegans (Thielaviopsis basicola) Phytopathology 96, 468-479. http://dx.doi.org/10.1094/PHYTO-96-0468 PMid:18944306

Pearson MN, Beever RE, Boine B, Arthur K. 2009. Mycoviruses of filamentous fungi and their relevance to plant pathology RID D-3988-2011. Mol Plant Pathol 10, 115- 128. http://dx.doi.org/10.1111/j.1364-3703.2008.00503.x PMid:19161358

Perez J, Martinez B, Rivas E, Diaz MA. 2000. Efecto del pH sobre la germinación conidial, crecimiento y esporulación de Didymella bryoniae (Awersw) Rehn. Rev Protección Veg Vol 15 (3), 185-187.

Polashock JJ, Hillman BI. 1994. A small mitochondrial double-stranded (ds) RNA element associated with hypovirulent strain of the chesnut blight fungus and ancestrally related to yeast cytoplasmic T and W dsRNAs. Proc Natl Acad Sci U.S.A. 91, 8680-8684. http://dx.doi.org/10.1073/pnas.91.18.8680 PMid:7521532 PMCid:44670

Polashock JJ, Bedker PJ, Hillman BI. 1997 Movement of a small mitochondrial double-stranded RNA element of Cryphonectria parasitica: ascospore inheritance and implications for mitochondrial recombination. Mol Gen Genet 256,566-571. http://dx.doi.org/10.1007/s004380050602 PMid:9413441

Robin C, Lanz S, Soutrenon A, Rigling D. 2010. Dominance of natural over released biological control agents of the chestnut blight fungus Cryphonectria parasitica in southeastern France is associated with fitness related traits. Biol control 53, 55-61. http://dx.doi.org/10.1016/j.biocontrol.2009.10.013

Rogers HJ, Buck KW, Brasier CM. 1987. A mitochondrial target for doubled-stranded RNA in diseased isolates of the fungus that causes Dutch elm disease. Nature 329: 558-560 http://dx.doi.org/10.1038/329558a0

Santamaria O, Pajares JA, Diez JJ. 2003. First report of Gremmeniella abietina on Pinus halepensis in Spain. Plant Pathol 52, 425-425. http://dx.doi.org/10.1046/j.1365-3059.2003.00847.x

Santamaria O, Pajares JA, Diez JJ. 2004. Physiological and morphological variation of Gremmeniella abietina from Spain. Forest Pathol 34, 395-405. http://dx.doi.org/10.1111/j.1439-0329.2004.00380.x

Santamaria O, Alves-Santos FM, Diez JJ. 2005. Genetic characterization of Gremmeniella abietina var. abietina isolates from Spain. Plant Pathol 54, 331-338. http://dx.doi.org/10.1111/j.1365-3059.2005.01184.x

SAS Institute INC. SAS/STAT®. 2004. User's Guide. Version 9.1. Cary, NC: SAS Institute Inc. USA.

Tan CMC, Pearson MN, Beever RE, Parkes SL. 2007. Why Fungi Have Sex? Abstract: XIVth International Botrytis Symposium, Cape Town, South Africa. October 21th-27th.

Tuomivirta T, Hantula J. 2003. Gremmeniella abietina mitochondrial RNA virus S1 is phylogenetically related to the members of the genus Mitovirus. Arch Virol 148, 2429-2436. http://dx.doi.org/10.1007/s00705-003-0195-5 PMid:14648296

Uotila A. 1983. Physiological and morphological variation among Finish Gremmeniella abietina isolates. Commun Inst For Fenn 119, 1-12.

Van Diepeningen A, Debets A, Hoekstra R. 2006. Dynamics of dsRNA mycoviruses in black Aspergillus populations. Fungal Genet Biol 43, 446-452. http://dx.doi.org/10.1016/j.fgb.2006.01.014 PMid:16546419

Vainio EJ, Korhonen K, Tuomivirta TT, Hantula J. 2010 A novel putative partitivirus of the saprotrophic fungus Heterobasidion ecrustosum infects pathogenic species of the Heterobasidion annosum complex. Fungal Biol 114, 11-12, 955-965

Vazquez-Garcia A, Santiago-Martinez G, Estrada-Torres A. 2002. Influencia del pH en el crecimiento de quince cepas de hongos ectomicorrizógenos. Anales del Instituto de Biología, UNAM, Serie Botánica 73(1), 1-15.

Wu M, Zhang L, Li G, Jiang D, Hou MS, Huang HC. 2007. Hypovirulence and double stranded RNA in Botrytis cinerea. Phytopathology 97, 1590-1599. http://dx.doi.org/10.1094/PHYTO-97-12-1590 PMid:18943720

Wu M, Zhang L, Li G, Jiang D, Ghabrial S. 2010. Genome characterization of a debilitation associated-mitovirus infecting the phytopathogenic fungus Botrytis cinerea. Virology 406, 117-126. http://dx.doi.org/10.1016/j.virol.2010.07.010 PMid:20674953

Yokota, S. 1975. Scleroderris canker of todo-fir in Hokkaido, Northern Japan. III. Dormant infection of the causal fungus. Eur J Forest Pathol 5, 7-12. http://dx.doi.org/10.1111/j.1439-0329.1975.tb00928.x

Zabalgogeazcoa I, Benito EP, García Ciudad A, García Criado B, Eslava AP. 1998. Double-stranded RNA and virus-like particles in the grass endophyte Epichloë festucae. Mycol Res 102, 914-918. http://dx.doi.org/10.1017/S0953756297005819

Zhang L, De Wu M, Li GQ, Jiang DH, Huang HC. 2010. Effect of Mitovirus infection on formation of infection cushions and virulence of Botrytis cinerea. Physiological and Mol Plant Pathol 75, 71-80. http://dx.doi.org/10.1016/j.pmpp.2010.09.001

Zharare GE, Kabanda SM, Poku JZ. 2010. Effects of temperature and hydrogen peroxide on mycelial growth of eight pleurotus strains. Sci Hortic-Amsterdam 125(2): 95-102. http://dx.doi.org/10.1016/j.scienta.2010.03.006




DOI: 10.5424/fs/2012213-02266

Webpage: www.inia.es/Forestsystems