Inheritance of cotyledon storage proteins in European sweet chestnut (Castanea sativa Miller)

M.A. Martín, J.B. Alvarez, J.C. Gutierrez, L.M. Martin

Abstract


A first approximation to the inheritance of cotyledon storage proteins was studied in European sweet chestnut (Castanea sativa Mill.) by evaluating the offspring of a controlled cross between two local chestnut varieties (Corriente and Pilonga) from southern Spain. The analysis was carried out in 15 polymorphic bands corresponding to the albumin fraction of the storage proteins. The relationship between bands displayed one case of allelism and four of linkage. These results should be considered as the baseline of the genetics of these proteins and suggest that they could be useful for the evaluation of the genetic variability in chestnut.


Full Text:

PDF

References


Alvarez J.B., Muñoz C., Martín-Cuevas A., Lopez S., Martín L.M., 2003. Cotyledon storage proteins as markers of the genetic diversity in Castanea sativa Miller. Theor Appl Genet 107, 730-735. http://dx.doi.org/10.1007/s00122-003-1298-9 PMid:12750777

Casasoli M., Mattioni C., Cherubini M., Villani F., 2001. A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers. Theor Appl Genet 102, 1190-1199. http://dx.doi.org/10.1007/s00122-001-0553-1

Crane E., Walker P., 1984. Composition of honey from some important honey sources. Bee World 65, 167-174.

Fineschi S., Gillet E., Malvolti E., 1990. Genetics of sweet chestnut (Castanea sativa Mill.). III. Genetic analysis of zymograms of single tree offsprings. Silvae Genet 39, 188-194.

Fonseca P.A., Ferreira R.B., Teixeira A.R., 1997. Seed proteins from Quercus suber. J Agric Food Chem 45, 3443-3447. http://dx.doi.org/10.1021/jf9609486

Gallastegui C., 1926. Técnica de la hibridación artificial del castaño. Boletín de la Real Sociedad Española de Historia Natural. Tomo XXVI, pp. 88-94.

Gepts P., 1990. Genetic diversity of seed storage proteins in plants. In: Plant population genetics breeding and genetic resources. (Brown A.H.D., Clegg M.T., Khaler A.L., Weir B.S., eds). Sinauer Associates Inc Publishers, Suderland, Massachusetts, USA. pp. 64-82.

Gillet E., Gregorious H.R., 1992. What can be inferred from open-pollination progenies about the source of observed segregation distortion? A case study in Castanea sativa Mill. Silvae Genet 41, 82-87.

Gillet E., Hattemer H., 1989. Genetic analysis of isoenzyme phenotypes using single tree progenies. Heredity 63, 135-141. http://dx.doi.org/10.1038/hdy.1989.84

Laemmli U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. http://dx.doi.org/10.1038/227680a0 PMid:5432063

Martín M.A., Alvarez J.B., Mattioni C., Cherubini M., Villani F., Martín L.M., 2009. Identification and characterisation of traditional chestnut varieties of southern Spain using morphological and simple sequence repeats SSR markers. Ann Appl Biol 154, 389-398. http://dx.doi.org/10.1111/j.1744-7348.2008.00309.x

Martín M.A., Martín L.M., Alvarez J.B., 2005. Cotyledon storage proteins in European sweet chestnut. Acta Hort 693, 459-463.

Ritter E., Gebhardt C., Salamini F., 1990. Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125, 645-654.




DOI: 10.5424/fs/2112211-02392

Webpage: www.inia.es/Forestsystems