Alternative sampling methods to estimate structure

  • A. Ayari Institut National de Recherches en Génie Rural. Eaux et Forêst (INRGREF).
  • D. Moya Escuela Técnica Superior de Ingenieros Agrónomos de Albacete. UCLM. Campus Universitario.
  • M.N. Rejeb Institut National de Recherches en Génie Rural. Eaux et Forêst (INRGREF).
  • A. Ben Mansoura Institut National de Recherches en Génie Rural. Eaux et Forêst (INRGREF).
  • S. Garchi Institut National de Recherches en Génie Rural. Eaux et Forêst (INRGREF).
  • J. de las Heras Escuela Técnica Superior de Ingenieros Agrónomos de Albacete. UCLM. Campus Universitario.
  • B. Hanchi Faculté des Sciences Mathématiques, Physiques et Naturelles. Tunis. Université El-Manar.
Keywords: Pinus halepensis Mill., bioclimatic zones, forest structure, sampling approach, increment, reproductive

Abstract

Aleppo pine had a large forest cover in North Africa and along the Mediterranean basin which management is not fully developed and new forest tools are required. In this research, the forest structure, epidometric characteristics and allometric relationships were studied in 79 plots covering four bioclimatic zones from natural even aged forests of Aleppo pine located between eastern Algeria to the western coastal part of Tunisia. To characterize the forest structure three sampling methods were carried out: classical inventories (recording all pine trees), and two simplified approach using one average size or five dominant pine tree per plot. Annual growth increment and cone production were only calculated for the average size tree. Furthermore, the analysis of variance showed non-significant differences recorded between bioclimatic zones in trunk or crown diameter using the two simplified approach. Moreover, a significant decrease from wetter to drier areas in total height, crown height, cone seed production was observed only for average size tree method. However, the analysis of covariance showed significant differences between both approaches in total height, trunk diameter and crown coverage which were largely influenced by the pine tree density. In future investigations, we confirmed previous research that the dominant tree is a good sampling method to examine the site fertility, whereas the average size tree constitutes a valuable approach to study the population growth and reproduction.

Downloads

Download data is not yet available.

References

Ayari A., Moya D., Ben Mansoura A., Rejeb M.N., Garchi S., De Las Heras J., Henchi B., 2010. Forest stand characteristics and individual tree size influences on Aleppo pine fructification and species conservation. International symposium on the biology of rare and endemic plant species (BIORARE, 2010). Fethiye, Mugla. May, 26-29, pp. 39-40.

Belghazi B., Ezzahiri M., Romane F., 2000. Productivité de peuplements naturels de pin d'Alep (Pinus halepensis Miller) dans la forêt de Tamga (Haut Atlas, Maroc). Cahiers d'Agriculture 9(1), 39-46.

Benkman G.W., 1995. Wind dispersal capacity of pine seeds and the evolution of different seed dispersal modes in pines. Oikos 73, 221-224. http://dx.doi.org/10.2307/3545911

Bentouati A., Bariteau M., 2005. Une sylviculture pour le pin d'Alep des Aurès (Algérie). Forêt Méditerranéenne 26(4), 315-321.

Bravo F., Pando V., Ordóñez C., Lizarralde I., 2008. Modelling ingrowth in mediterranean pine forests: A case study from scots pine (Pinus sylvestris L.) and Mediterranean maritime pine (Pinus pinaster Ait.) stands in Spain. Invest Agrar: Sist Recur For 17(3), 250-260.

Castagneri D., Vacchiano G., Lingua E., Motta R., 2008. Analysis of intraspecific competition in two subalpine Norway spruce (Picea abies (L.) Karst.) stands in Paneveggio (Trento, Italy). Forest Ecology and Management 255, 651-659. http://dx.doi.org/10.1016/j.foreco.2007.09.041

Climent J., Prada M.A., Calama R., Chambel R.M., De Ron D.S., Alia R., 2008. To grow or to seed: Ecotypic Variation in reproductive allocation and cone production by young female Aleppo pine (Pinus halepensis, Pinaceae). American Journal of Botany 95 (7), 1-10. http://dx.doi.org/10.3732/ajb.2007354 PMid:21632409

Condés S., Sterba H. 2008. Comparing an individual tree growth model for Pinus halepensis Mill. in the Spanish region of Murcia with yield tables gained from the same area. European Journal of Forest Research 127(3), 253-261. doi: 10.1007/s10342-007-0201-7. http://dx.doi.org/10.1007/s10342-007-0201-7

Corona P., Saracino A., Leone V., 1998. Plot size and shape for the early assessment of post-fire regeneration in Aleppo pine stands. New Forests 16, 213-220. http://dx.doi.org/10.1023/A:1006598207270

De Las Heras J., Moya D., López-Serrano F.R., Condés S., 2007 Reproduction of postfire Pinus halepensis Mill. stands six years after silvicultural treatments. Annales of Forest Sciences 64, 59-66. http://dx.doi.org/10.1051/forest:2006088

De Luis M., Novak K., CUfar C., Raventós J. 2009. Size mediated climate-growth relationships in Pinus halepensis and Pinus pinea. Trees-Structure and Function 23 (5), 1065-1073. doi: 10.1007/s00468-009-0349-5. http://dx.doi.org/10.1007/s00468-009-0349-5

Fady B., Semerci H., Vendramin G.G., 2003. Euforgen Technical Guidelines for genetic conservation and use for Aleppo pine (Pinus halepensis) and Brutia pine (Pinus brutia). International Plant Genetic Resources Institute, Rome, pp. 6.

FAO, 2001. Global forest resources assessment 2000. FAO forestry paper 140. Rome.

Fernández M., Tapias R., 2005. Perspective of forest ecophysiological in the context of Mediterranean Basin. Forest Systems 14(3), 538-549.

Garchi S., Ben Mansoura A., 1999. Influence de l'ombrage sur la structure et l'accroissement du pin d'Alep à Jbel Mansour. Les annales de l'INRGREF (3), 89-102.

Gaucherel C., Guiot J., Misson L., 2008. Changes of the potential distribution area of French Mediterranean forests under global warming. Biogeoscience 5(6), 1493-1504. http://dx.doi.org/10.5194/bg-5-1493-2008

Goreaud F., Coligny F., Courbaud B., Dhôte J.F., Dreyfus P., Pérot T., 2005. La modélisation: un outil pour la gestion et l'aménagement en forêt. Vertigo 6(2), 1-12.

Gounot M., Le Houerou H.N. et al., 1967. Carte bioclimatique de la Tunisie Septentrionale à 1/500000. CNRS/CEPE Montpellier, Secrétariat d'État au Plan et à l'Économie Nationale de Tunisie.

Goubitz S., Nathan R., Roitemberg R., Shmida A., Ne'eman G., 2004. Canopy seed bank structure in relation to: fire, tree size and density. Plant Ecology 173, 191-201. http://dx.doi.org/10.1023/B:VEGE.0000029324.40801.74

Goubitz S., Werger M.J.A., Ne'eman G., 2003. Germination response to fire-related factors of seeds from non-serotinous and serotinous cones. Plant Ecology 169, 195-204. http://dx.doi.org/10.1023/A:1026036332277

Goubitz S., Werger M.J.A., Shmida A., Ne'eman G., 2002. Cone abortion in Pinus halepensis: the role of pollen quantity, tree size and cone location. Oikos 97, 125-133. http://dx.doi.org/10.1034/j.1600-0706.2002.970113.x

Harfouche A., Boudjada S., Chettah W., Allam., Belhou O., Merazga A., 2003. Variation and population structure in Aleppo pine (Pinus halepensis Mill) in Algeria. Silvae Genetica 52(5-6), 244-249.

Ketterings Q.M., Coe R., Van Noordwijk M., Ambagau Y., Palm C.A., 2001. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground biomass in mixed secondary forests. Forest Ecology and Management 146, 199-209. http://dx.doi.org/10.1016/S0378-1127(00)00460-6

Khouja M.L., Sghaier T., Nouri M., André P., 2000. Variabilité mophométrique chez le pin d'Alep (Pinus halepensis Mill.) et perspectives d'amélioration génétique. Les annales de l'INRGREF (4), 78-118.

Korhonen L., Korhonen K.T., Rautiainen M., Stenberg P. 2006. Estimation of forest canopy cover: a comparison of field measurement techniques. Silva Fennica 40(4): 577-588.

Lanner R.M., 1998. Seed dispersal in Pinus. In: Ecology and biogeography of Pinus (Richardson D.M., ed). Cambridge University Press. pp. 281-295.

López-Serrano F.R., García-Morote A., Andrésabellán M., Tendro A., Del Cerro A., 2005. Site and weather effects in allometries: a simple approach to climate change effect on pines. Forest Ecology and Management 215, 251-270. http://dx.doi.org/10.1016/j.foreco.2005.05.014

Mailly D., Gaudreault M., Picher G., Auger I., Pothier D., 2009. A comparison of mortality rates between top height trees and average site trees. Annales of Forest Sciences 66 (202). doi: 10.1051/forest/2008084. http://dx.doi.org/10.1051/forest/2008084

Matziris D.I., 2000. Genetic variation and realized genetic gain from Aleppo pine tree improvement. Silvae Genetica 49(1), 5-10.

Meredieu C., Perret S., Dreyfus P., 2003. Modeling dominant height growth: effect of stand density. IUFRO Workshop Reality, Models and Parameters Estimation organised by l'Institut Supérieur de Gestion de Lisbonne Sesimbra (Portugal, 2-5 juin 2002). In: Modelling forest systems (Amaro A., Reed D., Soares P., eds). CABI Publishing, Wallingford, UK. pp.111-121.

Milliken G.A., Johnson D.A., 2002. Analyses of Messy Data. Volume III: Analysis of covariance. Chapman & Hall/CRC, New York, NY.

Montero G., Cañellas I., Ruiz-Peinado R., 2001. Growth and yield models for Pinus halepensis Mill. Invest Agrar: Sist Recur For 10(1), 179-201.

Moriondo M., Good P., Durao R., Bindi M., Giannakopoulos C., Corte-Real C., 2006. Potential impact of climate change on fire risk in the Mediterranean area. Climate Research 31, 85-95. http://dx.doi.org/10.3354/cr031085

Moya D., Espelta J.M., Verkaik I., López-Serrano F.R., De Las Heras J., 2007. Tree density and site quality influence on Pinus halepensis Mill. Reproductive characteristics after large fires. Annales of Forest Sciences 64, 649- 656. http://dx.doi.org/10.1051/forest:2007043

Moya D., De Las Heras J., López-Serrano F.R., Leone V., 2008a. Optimal intensity and age management in young Aleppo pine stands for postf ire resilience. Forest Ecology and Management 255, 3270-3280. http://dx.doi.org/10.1016/j.foreco.2008.01.067

Moya D., Espelta J.M., López-Serrano F.R., Eugenio M., De Las Heras J., 2008b. Natural postfire dynamics and serotiny in ten year-old Pinus halepensis Mill. stands along a geographic gradient. International Journal of Wildlandfire 17, 287-292. http://dx.doi.org/10.1071/WF06121

Moya D., De Las Heras J., López-Serrano F.R., Condés S., Alberdi I., 2009. Structural patterns and biodiversity in burned and managed Aleppo pine stands. Plant Ecology 200(2), 217-228. http://dx.doi.org/10.1007/s11258-008-9446-6

Newton A.C., 2007. Forest ecology and conservation: a handbook of techniques. Oxford University Press, Oxford. 454 pp. http://dx.doi.org/10.1093/acprof:oso/9780198567448.001.0001

Reid D.E.B., Silins U., Lieffers V.J., 2003. Stem sapwood permeability in relation to crown dominance and site quality in self-thinning fire-origin lodgepole pine stands. Tree Physiology 23, 833-840. http://dx.doi.org/10.1093/treephys/23.12.833 PMid:12865249

Reque J.A., Bravo F., 2008. Identifying forest structure types using National Forest Inventory Data: the case of sessile oak forest in the Cantabrian range. Spanish Journal of Agricultural Research 17(2), 105-113.

Rivas-Martínez S., Sánchez-Mata D., Costa M., 1999. North American boreal and western temperate forest. Itinera Geobotanica 12, 5-16.

Rondeux J., 1993. La mesure des arbres et des peuplements forestiers. Les Presses Agronomiques de Gembloux, Belgium. pp. 521.

Sabaté S., Gracia C., Sánchez A., 2002. Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. Forest Ecology and Management 162, 23-37. http://dx.doi.org/10.1016/S0378-1127(02)00048-8

SAS Institute Inc, 2004. SAS, 9.1 SQL Procedure User's Guide. Cary, NC, SAS Institute Inc.

Schiller G., Atzmon N., 2009. Performance of Aleppo pine (Pinus halepensis) provenances grown at the edge of the Negev desert: a review. Journal of Arid Environments 73(12), 1051-1057. http://dx.doi.org/10.1016/j.jaridenv.2009.06.003

Vacchio G., Motta R., Long J.N., Shaw J.D., 2008. A density management diagram for Scots pine (Pinus sylvestris L.): a tool for assessing the forest's protective effect. Forest Ecology and Management 255, 2542-2554. http://dx.doi.org/10.1016/j.foreco.2008.01.015

Vennetier M., Ripert C., Maille E., Blanc L., Torre F., Roche P., Tatoni T., Brun J.J., 2008. A new bioclimatic model calibrated vegetation for Mediterranean forest areas. Annals of Forest Sciences 65, 711-721. http://dx.doi.org/10.1051/forest:2008050

Verkaik I., Espelta J.M., 2006. Post-fire regeneration thinning, cone production, serotiny and regeneration age in Pinus halepensis. Forest Ecology and Management 231, 155-163. http://dx.doi.org/10.1016/j.foreco.2006.05.041

Vilà M., Vayreda J., García C., Montserrat J.J., 2003. Does tree diversity increase wood production in pine forests? Oecologia, 135, 299-303. WANG G., 1998. Is height of dominant trees at a reference diameter an adequate measure of site quality? Forest Ecology and Management 112, 49-54.

West P.W., 2009. Tree and forest measurement, 2nd ed. Springer Dordrecht Heidelberg New York (ISNB: 978-3- 540-95965-6). pp. 191.

Wittwer R.F., Tauer C.G., Huebschman M.M., Huang Y., 1997. Estimating seed quantity and quality in shortleaf pine (Pinus echinata Mill.) cones from natural stands. New Forests 14, 45-53. http://dx.doi.org/10.1023/A:1006528302718

Published
2011-12-04
How to Cite
Ayari, A., Moya, D., Rejeb, M., Ben Mansoura, A., Garchi, S., de las Heras, J., & Hanchi, B. (2011). Alternative sampling methods to estimate structure. Forest Systems, 20(3), 348-360. https://doi.org/10.5424/fs/20112003-10982
Section
Research Articles