Fine roots of overstory Norway spruce (Picea abies):

I. Catalin Petritan, B. von Lupke, A. M. Petritan

Abstract


The horizontal and vertical distribution of live fine roots (diameter < 2 mm) of overstory Norway spruce [Picea abies (L.) Karst.] and their influence on diameter and height growth of underplanted beech (Fagus sylvatica L.) and Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) saplings were studied on experimental plots in the Solling Mountains (Germany). The aims of this study were to investigate how overstory fine root density varies with stand density, and how it influences growth of the underplanted saplings to changes in belowground resources availability in connection with simultaneously changing light availability. Most fine roots were concentrated in the humus layer (more than 45%) and in the top mineral soil (0-5 cm, about 15%). Fine root biomass increases with overstory basal area and decreases with rising distance from the nearest overstory tree, reaching about zero within ca. 8 m distance. Over the whole two-year study period, light availability alone was the decisive factor for growth of the beech saplings (5 resp. 6 years of age) while growth of the Douglas-fir saplings in the first study year (6 years of age) was additionally affected by a shortage of belowground resources due to root competition in a season with less than average rainfall. This species-specific response of underplanted saplings to changes in above and belowground resources is of silvicultural importance for the establishment of a mixed stand beneath a mature canopy: the more sensitive Douglasfir should be planted on the central parts of openings with little or none belowground competition while the less sensitive beech can be placed below the denser parts of the overstory.

Keywords


forest conversion; fine roots; above- and belowground competition; juvenile growth; shade tolerance.

Full Text:

PDF

References


Achat D.L., Bakker M.R., Trichet P., 2008. Rooting patterns and fine root biomass of Pinus pinaster assessed by trench wall and core methods. J For Res 13, 165-175. http://dx.doi.org/10.1007/s10310-008-0071-y

Ammer C., 2000. Untersuchungen zum Einfluss von Fichtenaltbeständen auf die Entwicklung jünger Buchen. Shaker Verlag, Aachen. 185 pp. PMCid:2810885

Ammer C., 2002. Response of Fagus sylvatica seedlings to root trenching of overstory Picea abies. Scand J For Res 17, 408-416. http://dx.doi.org/10.1080/028275802320435423

Ammer C., Wagner S., 2002. Problems and options in modeling fine root biomass of single mature Norway spruce trees at given points from stand data. Can J For Res 32, 581-590. http://dx.doi.org/10.1139/x01-229

Ammer C., Wagner S., 2005. An approach for modeling the mean fine-root biomass of Norway spruce stands. Trees 19, 145-153. http://dx.doi.org/10.1007/s00468-004-0373-4

Ammer C., Stimm B., Mosandl R., 2008. Ontogenetic variation in the relative influence of light and belowground resources on European beech seedling growth. Tree Physiol 28, 721-728. http://dx.doi.org/10.1093/treephys/28.5.721 PMid:18316304

Bakker M.R., Turpault M.P., Huet S., NYS C., 2008. Root distribution of Fagus sylvatica in a chronosequence in western France. J For Res 13, 176-184. http://dx.doi.org/10.1007/s10310-008-0068-6

Bauhus J., Messier C., 1999. Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Can J For Res 29, 260-273.

Bolte A., Villanueva I., 2006. Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies L. Karst.) Eur J For Res 125, 15-26. http://dx.doi.org/10.1007/s10342-005-0075-5

Borken W., Kossmann G., Matzner E., 2007. Biomass, morphology and nutrient contents of fine roots in four Norway spruce stands. Plant and Soil 292, 79-93. http://dx.doi.org/10.1007/s11104-007-9204-x

Chen W., Zhang Q., Cihlar J., Bauhus J., Price D.T., 2004. Estimating fine-root biomass and production of boreal and cool temperate forests using aboveground measurements: a new approach. Plant and Soil 265, 31-46. http://dx.doi.org/10.1007/s11104-005-8503-3

Clemensson-Lindell A., Persson H., 1995. Fineroot vitality in a Norway spruce stand subjected to various nutrient supplies. Plant and Soil 168-169, 167-172. http://dx.doi.org/10.1007/BF00029325

Coomes D.A., Grubb P.J., 1998. Responses of juvenile trees to above- and below-ground competition in nutrientstarved Amazonian rain forest. Ecology 79, 768-782. http://dx.doi.org/10.1890/0012-9658(1998)079[0768:ROJTTA]2.0.CO;2

Coomes D.A., Grubb P.J., 2000. Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol Monogr 70, 171-207. http://dx.doi.org/10.1890/0012-9615(2000)070[0171:IORCIF]2.0.CO;2

Devine W.D., Harrington T.B., 2008. Belowground competition influences growth of natural regeneration in thinned Douglas-fir stands. Can J For Res 38, 3085-3097. http://dx.doi.org/10.1139/X08-150

Finér L., Helmisaari H.S., Lõhmus K., Majdi H., Brunner I., Bø’Rja I., Eldhuset T., Godbold D., Grebenc T., Konôpka B., Kraigher H., Möttönen M.R., Ohashi M., Oleksyn J., Ostonen I., Uri V., Vanguelova E., 2007. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karts.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141, 394-405. http://dx.doi.org/10.1080/11263500701625897

Heinrichs S., Schmidt W., 2009. Short-term effects of selection and clear cutting on the shrub and herb layer vegetation during the conversion of even-aged Norway spruce stands into mixed stands. For Ecol Manage 258, 667-678.

Helmisaari H., Hallbäcken L., 1999. Fine-root biomass and necromass in limed and fertilized Norway spruce (Picea abies L. Karst.) stands. For Ecol Manage 119, 99-110.

Le Goff N., Ottorini J.M., 2001. Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North-East France. Ann For Sci 58, 1-13. http://dx.doi.org/10.1051/forest:2001104

Lindh B., Gray A., Spies T., 2003. Responses of herbs and shrubs to reduced root competition under canopies and in gaps: a trenching experiment in old-growth Douglas-fir forests. Can J For Res 33, 2052-2057. http://dx.doi.org/10.1139/x03-120

Lõhmus K., Oja T., Lasn R., 1989. Specific root area: a soil characteristic. Plant and Soil 119, 245-249. http://dx.doi.org/10.1007/BF02370415

Lüpke B.V., 2004. Risikominderung durch Mischwälder und naturnaher Waldbau: ein Spannungsfeld. Forstarchiv 75, 43-50.

Lüpke B.V., 2009. Überlegungen zu Baumartenwahl und Verjüngungsverfahren bei fortschreitender Klimaänderung in Deutschland. Forstarchiv 80, 67-75.

Lüpke B.V., Hauskeller-Bullerjahn K., 2004. Beitrag zur Modellierung der Jungwuchsentwicklung am Beispiel von Traubeneichen-Buchen-Mischverjüngungen. Allg Forst u J Ztg 175, 61-69.

Lüpke B.V., Ammer C., Braciamacchie M., Brunner A., Ceitel J., Collet C., Deuleuze C., Di Placido J., Huss J., Jankovic J., Kantor P., Larsen J.B., Lexer M., Löf M., Longauer R., Madsen P., Modrzynski J., Mosandl R., Pampe A., Pommerening A., Stefancik J., Tesar V., Thompson R., Zientarski J., 2004. Silvicultural strategies for conversion. In: Norway spruce conversion –options and consequences (Spiecker H., Hansen J., Klimo E., Skovsgaard J.P., Sterba H., Teuffel K.v., eds). European Forest Institute Research Report 18. Leiden, Boston, Brill. pp. 121-164.

Machado J.L., Walters M.B., Reich P.B., 2003. Below-ground resources limit seedling growth in forest understories but do not alter biomass distribution. Ann For Sci 60, 319-330. http://dx.doi.org/10.1051/forest:2003023

Mailly D., Kimmins J.P., 1997. Growth of Pseudotsuga menziesii and Tsuga heterophylla seedling along a light gradient: resource allocation and morphological acclimation. Can J of Botany 75, 1424-1435. http://dx.doi.org/10.1139/b97-857

Meinen C., Leuschner C., Ryan N.T., Hertel D., 2009. No evidence of spatial root system segregation and elevated fine root biomass in multi-species temperate broad-leaved forests. Trees 23, 941-950. http://dx.doi.org/10.1007/s00468-009-0336-x

Messier C., Doucet R., Ruel J.C., Claveau Y., Kelly C., Lechowicz M.J., 1999. Functional ecology of advance regeneration in relation to light in boreal forests. Can J Res 29, 812-823. http://dx.doi.org/10.1139/x99-070

Müller K.H., WAGNER S., 2003. Fine root dynamics in gaps of Norway spruce stands in the German Ore Mountains. Forestry 76, 149-158. http://dx.doi.org/10.1093/forestry/76.2.149

Murach D., 1984. Die Reaktion der Feinwurzeln von Fichten auf zunehmende Bodenversauerung. Göttinger Bodenkundl Ber 77, 1-127.

Nielsen C.C.N., Mackenthun G., 1991. Die horizontale Variation der Feinwurzelintensität in Waldböden in Abhängigkeit von der Bestockungsdichte. eine rechnerische Methode zur Bestimmung der «Wurzelintensitätsglocke » an Einzelbäumen. Allg Forst- u J Ztg 162, 112-119.

Ostonen I., Lõhmus K., Helmisaari H.S., Truu J., Meel S., 2007. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests. Tree Physiol 27, 1627-1634. http://dx.doi.org/10.1093/treephys/27.11.1627 PMid:17669752

Parker M.M., Van Lear D.H., 1996. Soil heterogeneity and root distribution of mature loblolly pine stands in piedmont soils. Soil Sci Soc Am J 60, 1920-1925. http://dx.doi.org/10.2136/sssaj1996.03615995006000060043x

Petritan A.M., Lüpke B. V., Petritan I.C., 2007. Effects of shade on growth and mortality of maple (Acer pseudoplatanus), ash (Fraxinus excelsior) and beech (Fagus sylvatica) saplings. Forestry 80, 397-412. http://dx.doi.org/10.1093/forestry/cpm030

Petritan A.M., Lüpke B. V., Petritan I.C., 2009. Influence of light availability on growth, leaf morphology and plant architecture of beech (Fagus sylvatica L.), maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.) saplings. Eur J Forest Res 128, 61-74. http://dx.doi.org/10.1007/s10342-008-0239-1

Petritan A.M., Lüpke B.V., Petritan I.C., 2010. A comparative analysis of foliar chemical composition and leaf construction costs of beech (Fagus sylvatica L.), sycamore maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.) saplings along a light gradient. Ann Sci For 67, 610_1_8.

Petritan I.C., Lüpke B.V., Petritan A.M., 2010. Einfluss unterschiedlicher Hiebsformen auf das Wachstum junger Buchen und Douglasien aus Pflanzung. Forstarchiv 81, 40-52.

Petritan I.C., Lüpke B.V., Petritan A.M., 2011. Effects of root trenching of overstory Norway spruce (Picea abies) on growth and biomass of underplanted beech (Fagus sylvatica) and Douglas fir (Pseudotsuga menziesii) saplings. Eur J Forest Res 130, 813-828. http://dx.doi.org/10.1007/s10342-010-0473-1

Pregitzer K.S., Deforest J.L., Burton A.J., Allen M.F., Ruess R.W., Hendrick R.L., 2002. Fine root architecture of nine north American trees. Ecol Monogr 72, 293-309. http://dx.doi.org/10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2

Puhe J., 2003. Growth and development of the root system of Norway spruce (Picea abies) in forest stands – a review. For Ecol Manage 175, 253-273.

Rewald B., Leuschner C., 2009. Belowground competition in a broad-leaved temperate mixed forest-pattern analysis and experiments in a four-species stands. Eur J For Res 128, 387-398. http://dx.doi.org/10.1007/s10342-009-0276-4

Riegel G.M., Miller R.F., Krueger W.C., 1992. Competition for resources between understory vegetation and overstory Pinus ponderosa in northeastern Oregon. Ecol Appl 2, 71-85. http://dx.doi.org/10.2307/1941890

Riegel G.M., Miller R.F., Krueger W.C., 1995. The effects of aboveground and belowground competition on understorey species composition in a Pinus ponderosa forest. Forest Sci 41, 864-889.

Röhrig E., 1967. Wachstum junger Laubholzpflanzen bei unterschiedlichen Lichtverhältnissen. Allg Forst u J Ztg 138, 224-239.

Schmid I., 2002. The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech. Basic Appl. Ecol 3, 33-346. http://dx.doi.org/10.1078/1439-1791-00116

Schmid I., Kazda M., 2002. Root distribution of Norway spruce in monospecific and mixed stands on different soils. For Ecol Manage 159, 37-47.

Spiecker H., Hansen J., Klimo E., Skovgaard J.P., Sterba H., Teuffel K.V., 2004. Norway Spruce Conversion - Options and Consequences. European Forest Institute Research Report 18, 1-269.

Stancioiu P.T., O'Hara K.L., 2006. Regeneration growth in different light environments of mixed species, multiaged, mountainous forests of Romania. Eur J Forest Res 125, 151-162. http://dx.doi.org/10.1007/s10342-005-0069-3

Statsoft INC., 2005. STATISTICA für Windows [Software-System für Datenanalyse] Version 9.1. www.statsoft.com

Stone E.L., Kalisz P.J., 1991. On the maximum extend of tree roots. For Ecol Manage 46, 59-102.

Taskinen O., Ilvesniemi H., Kuuluvainen T., Leinonen K., 2003. Response of fine roots to an experimental gap in a boreal Picea abies forest. Plant Soil 255, 503-512. http://dx.doi.org/10.1023/A:1026077830097

Van Hees A.F.M., 1997. Growth and morphology of pedunculate oaks (Quercus robur L.) and beech (Fagus sylvatica L.) seedlings in relation to shading and drought. Ann Sci For 54, 1-10. http://dx.doi.org/10.1051/forest:19970102

Vanninen P., Mäkelä A., 1999. Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiol 19, 823-830. http://dx.doi.org/10.1093/treephys/19.12.823 PMid:10562399

Wagner S., 1996. Übertragung strahlungrelevanter Wetterinformation aus punktuellen PAR-Sensordaten in größere Versuchsflächenanlagen mit Hilfe hemisphärischer Fotos. Allg Forst-u J-Ztg 167, 34-40.

Wagner S., 1999. Ökologische Untersuchungen zur Initialphase der Naturverjüngung in Eschen-Buchen-Mischbeständen. Schriften Forstl. Fakultät Univ Göttingen, Nieders. Forstl. Versuchsanstalt 129 JD Sauerländer's Verlag, Frankfurt a M.




DOI: 10.5424/fs/20112003-11136

Webpage: www.inia.es/Forestsystems