Former agriculture impacts on properties of Norway spruce forest

D. Kacalek, D. Dusek, J. Novak, M. Slodicak, J. Bartos, V. Cernohous, V. Balcar

Abstract


Forest floor is considered a major feature distinguishing forest from agricultural soils. Forest floor develops as forest stands grow and is composed of more or less altered plant-tissue biomass accumulated on the soil surface. Our study’s aim was to find whether properties of both the organic layers and mineral soil differ according to the land-use history of the sites compared. Each site included an afforested area of immature 50-year-old spruce forest (AFF) on formerly agricultural land plus an adjacent area of old-growth 100-year-old spruce stand (FOR). The localities are situated at altitudes ranging between 600 and 850 metres above sea level. From the results of our study it can be concluded that both forest floor and mineral soil had higher pH and Ca concentration at formerly agricultural sites. C/N ratio is significantly lower in afforested soil. First-generation humus was significantly higher in phosphorus.

Keywords


afforestation; land use; legacy of agriculture; Picea abies (L.) Karst.

Full Text:

PDF

References


Alriksson A., Olsson M.T., 1995. Soil changes in different age classes of Norway spruce [Picea abies (L.) Karst.] on afforested farmland. Plant and Soil 168/169, 103-110. http://dx.doi.org/10.1007/BF00029319

Armolaitis K., Aleinikoviene˙ J., Baniu¯Niene˙ A., Lubyte˙ J., Z˘E˙ Kaite˙ V., 2007. Carbon sequestration and nitrogen status in Arenosols following afforestation or following abandonment of arable land. Baltic Forestry 13, 169-178.

Augusto L., Ranger J., Binkley D., Rothe A., 2002. Impact of several common tree species of European temperate forests on soil fertility. Annales of Forest Science 59, 233-253. http://dx.doi.org/10.1051/forest:2002020

Augusto L., Dupouey J.L., Ranger J., 2003. Effects of tree species on understory vegetation and environmental conditions in temperate forests. Annales of Forest Science 60, 823-831. http://dx.doi.org/10.1051/forest:2003077

Batjes N.H., 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science 47, 151-163. http://dx.doi.org/10.1111/j.1365-2389.1996.tb01386.x

Bedrna Z., 2002. Environmentálne pôdoznalectvo, 1st ed. Veda, Bratislava. 352 pp. [In Slovakian].

Binkley D., Valentine D., 1991. Fifty-year biogeochemical effects of green ash, white pine, and Norway spruce in a replicated experiment. Forest Ecology and Management 40, 13-25. http://dx.doi.org/10.1016/0378-1127(91)90088-D

Brandtberg P.O., Lundkvist H., Bengtsson J., 2000. Changes in forest-floor chemistry caused by a birch admixture in Norway spruce stands. Forest Ecology and Management 130, 253-264. http://dx.doi.org/10.1016/S0378-1127(99)00183-8

Briggs R.D., 2004. The Forest Floor. In: Encyclopedia of Forest Sciences, Vol. 3 (Burley J. et al., eds). Elsevier, Oxford. pp. 1223-1227. http://dx.doi.org/10.1016/B0-12-145160-7/00241-6

Cerli C.H., Celi L., Johansson M.B., Kögelknabner I., Rosenqvist L., Zanini E., 2006. Soil organic matter changes in a spruce chronosequence on Swedish former agricultural soil. I. Carbon and lignin dynamics. Soil Science 171, 837-849. http://dx.doi.org/10.1097/01.ss.0000228061.23334.98

Cerli C.H., Celi L., Kaiser K., Guggenberger G., Johansson M.B., Cignetti A., Zanini E., 2008. Changes in humic substances along an age sequence of Norway spruce stands planted on former agricultural land. Organic Geochemistry 39, 1269-1280. http://dx.doi.org/10.1016/j.orggeochem.2008.06.001

Compton J.E., Boone R.D., Motzkin G., Foster D.R., 1998. Soil carbon and nitrogen in pine-oak sand plain in central Massachusetts: role of vegetation and land-use history. Oecologia 116, 536-542. http://dx.doi.org/10.1007/s004420050619

Domz˙Al/ H., Hodara J., Sl/ Owin´ Ska-Jurkiewicz A., Turski R., 1993. The effects of agricultural use on the structure and physical properties of three soil types. Soil & Tillage Research 27, 365-382. http://dx.doi.org/10.1016/0167-1987(93)90078-4

Dupouey J.L., Dambrine E., Laffite J.D., Moares C., 2002. Irreversible impact of past land use on forest soils and biodiversity. Ecology 83, 2978-2984. http://dx.doi.org/10.1890/0012-9658(2002)083[2978:IIOPLU]2.0.CO;2

Ellert B.H., Gregorich E.G., 1996. Storage of carbon, nitrogen and phosphorus in cultivated and adjacent forested soils of Ontario. Soil Science 161, 587-602. http://dx.doi.org/10.1097/00010694-199609000-00004

Falkengren-Grerup U., Brink D.J. Ten, Brunet J., 2006. Land use effects on soil N, P, C and pH persists over 40-80 years of forest growth on agricultural soils. Forest Ecology and Management 225, 74-81. http://dx.doi.org/10.1016/j.foreco.2005.12.027

Grieve I.C., 2001. Human impacts on soil properties and their implications for the sensitivity of soil systems in Scotland. Catena 42, 361-374. http://dx.doi.org/10.1016/S0341-8162(00)00147-8

Hagen-Thorn A., Callesen I., Armolaitis K., Nihlgård B., 2004. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. Forest Ecology and Management 195, 373-384. http://dx.doi.org/10.1016/j.foreco.2004.02.036

Jussy J.H., Koerner W., Dambrine É., Dupouey J.L., Benoît M., 2002. Influence of former agricultural land use on net nitrate production of forest soils. European Journal of Forest Science 53, 367-374.

Keersmaeker L. De, Martens L., Verheyen K., Hermy M., Schrijver A. De, Lust N., 2004. Impact of soil fertility and insolation on diversity of herbaceous woodland species colonizing afforestations in Muizen forest (Belgium). Forest Ecology and Management 188, 291-304. http://dx.doi.org/10.1016/j.foreco.2003.07.025

Koerner W., Dupouey J.L., Dambrine E., Benoît M., 1997. Influence of past land use on the vegetation and soils of present day forest in the Vosges Mountains, France. Journal of Ecology 85, 351-358. http://dx.doi.org/10.2307/2960507

Loz Ek V., 1999. Zeme˘ de˘lská kolonizace a její dopad. Ochrana pr˘írody 54, 227-233. [In Czech, with English Summary].

Mehlich A., 1984. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis 15, 1409-1416. http://dx.doi.org/10.1080/00103628409367568

Morris L.A., 2004. Soil organic matter forms and functions. In: Encyclopedia of Forest Sciences (Burley J. et al., eds). Elsevier, Oxford. pp. 1201-1207. http://dx.doi.org/10.1016/B0-12-145160-7/00245-3

Niu X., Duiker S.W., 2006. Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern US Forest Ecology and Management 223, 415-427. http://dx.doi.org/10.1016/j.foreco.2005.12.044

Oheimb G. Von, Härdtle W., Naumann P., Westphal C.H., Assmann T., Meyer H., 2008. Long-term effects of historical heathland farming on soil properties of forest ecosystems. Forest Ecology and Management 255, 1984-1993. http://dx.doi.org/10.1016/j.foreco.2007.12.021

Olofsson J., Hickler T., 2008. Effect of human landuse on the global carbon cycle during the last 6,000 years. Vegetation History and Archaeobotany 17, 605-615. http://dx.doi.org/10.1007/s00334-007-0126-6

Opletal M., Domec Ka K. (eds), 1983. Synoptic geological map of the Orlické hory Mts. Geological Survey, Prague.

Ouimet R., Tremblay S., Périé C., Prégent G., 2007. Ecosystem carbon accumulation following fallow farmland afforestation with red pine in southern Quebec. Canadian Journal of Forest Research 37, 1118-1133. http://dx.doi.org/10.1139/X06-297

Podrázsky V., Ste Páník R., 2002. Vy voj pu d na Zalesne ny ch zeme de lsky ch plochách – oblast LS C esky Rudolec. Zprávy lesnického vy´zkumu 47, 53-56. [In Czech, with English Abstract].

Podrázsky V., Remes J., 2007. Humus form status in close-to-nature forest parts in comparison with afforested agricultural lands. Lesnícky c˘ asopis – Forestry Journal 53, 99-106.

Podrázsky V., Procházka J., 2009. Effects of the reforestation of agricultural lands on the humus form development in the middle altitudes. Scientia Agriculturae Bohemica 40, 41-46.

Podrázsky V., Remes J., Hart V., Moser W.K., 2009. Production and humus form development in forest stands established on agricultural lands – Kostelec nad C erny mi lesy region. Journal of Forest Science 55, 299-305.

Prévosto B., Dambrine E., Moares C., Curt T., 2004. Effects of volcanic ash chemistry and former agricultural use on the soils and vegetation of naturally regenerated woodlands in the Massif Central, France. Catena 56, 239-261. http://dx.doi.org/10.1016/j.catena.2003.10.014

Richter D.D., Markewitz D., Heine P.R., Jin V., Raikes J., Tian K., Wells C.G., 2000. Legacies of agriculture and forest regrowth in the nitrogen of old-field soils. Forest Ecology and Management 138, 233-248. http://dx.doi.org/10.1016/S0378-1127(00)00399-6

Ritter E., Vesterdal L., Gundersen P., 2003. Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce. Plant and Soil 249, 319-330. http://dx.doi.org/10.1023/A:1022808410732

Schaetzl R.J., Johnson D.L., Burns S.F., Small T.W., 1989. Tree uprooting: review of terminology, process, and environmental implications. Canadian Journal of Forestry Research 19, 1-11. http://dx.doi.org/10.1139/x89-001

Singer J.S., Munns D.N., 1996. Soils: an introduction. Prentice Hall, New Jersey. 480 pp.

Smal H., Olszewska M., 2008. The effect of afforestation with Scots pine (Pinus sylvestris L.) of sandy postarable soils on their selected properties. II. Reaction, carbon, nitrogen and phosphorus. Plant and Soil 305, 171-187. http://dx.doi.org/10.1007/s11104-008-9538-z

Szujecki A., 1996. Ekologiczne aspekty odtwarzania lasu na glebach porolnych. Prace IBL ser B, No. 27, 47-55. [In Polish].

Simek M., 2003. Základy nauky o pu de, 1. Nezivé slozky pudy. Jihoc eská univerzita, C eské Budejovice. 131 pp. [In Czech].

Thuille A., Schulze E.D., 2006. Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Global Change Biology 12: 325-342. http://dx.doi.org/10.1111/j.1365-2486.2005.01078.x

Torreano S., 2004. Soil development and properties. In: Encyclopedia of Forest Sciences (Burley J et al., eds). Elsevier, Oxford. pp. 1208-1216. http://dx.doi.org/10.1016/B0-12-145160-7/00239-8

Valtinat K., Bruun H.H., Brunet J., 2008. Restoration of oak forest: effects of former arable land use on soil chemistry and herb layer vegetation. Scandinavian Journal of Forest Research 23, 513-521. http://dx.doi.org/10.1080/02827580802545572

Verheyen K., Bossuyt B., Hermy M., Tack G., 1999. The land use history (1278-1990) of a mixed hardwood forest in western Belgium and its relationship with chemical soil characteristics. Journal of Biogeography 26, 1115-1128. http://dx.doi.org/10.1046/j.1365-2699.1999.00340.x

Wall A., Hytönen J., 2005. Soil fertility of afforested arable land compared to continuously forested sites. Plant and Soil 275, 247-260. http://dx.doi.org/10.1007/s11104-005-1869-4

Wall A., Westman C.J., 2006. Site classification of afforested arable land based on soil properties for forest production. Canadian Journal of Forest Research 36, 1451-1460. http://dx.doi.org/10.1139/x06-031

Wiliams M., 2000. Dark ages and dark areas: global deforestation in the deep past. Journal of Historical Geography 26, 28-46. http://dx.doi.org/10.1006/jhge.1999.0189

Zar J.H., 2009. Biostatistical analysis. Pearson Prentice Hall, New Jersey. 943 pp. PMCid:2777189

Zbíral J., 1995. Analyza pud I (Jednotné pracovní postupy). Státní kontrolní a zkus ební ústav zemedelsky, Brno. 177 pp. [In Czech].




DOI: 10.5424/fs/20112003-11042

Webpage: www.inia.es/Forestsystems