Microbial biomass and N mineralization in mixed plantations of broadleaves and nitrogen-fixing species

E. L. Pereira, S.A.P Santos, M. Arrobas, M.S. Patricio

Abstract


Mixed stands with nitrogen fixing secondary species can improve the vigour and the stand environment of the targeted species. The aim of this study was to better understand the effect of the consociation of a N-fixing species (black locust) with a broadleaf quality timber production (wild cherry). The study was conducted in 11 year old plantations located in the Northeast of Portugal. The treatments considered were: pure black locust, pure wild cherry and mixture of wild cherry and black locust. Each plot had six lines with 12 trees and a buffer strip line. The samplings were collected on the plantation line within a radius of 50 to 100 cm from the tree. In each plot we measured soil N mineralization dynamic, soil microbial biomass carbon (MBC) and nitrogen (MBN), microbial quotient (MBC/Corg), metabolic quotient (qCO2), microbial respiration and dehydrogenase activity. Results showed a positive impact of the black locust species on the supply of nitrogen to the soil. The net N-mineralization rates were, at the end of this study, about three times greater in the pure black locust than in the pure wild cherry and about two times greater in the mixture than in the pure wild cherry. MBC and cumulative soil respiration were higher in the mixture than in the pure cherry plantation soil which may reflect positive changes in the soil environment.

Keywords


Prunus avium; Robinia pseudoacacia; accessory trees; soil respiration; dehydrogenase activity; metabolic

Full Text:

PDF

References


Binkley D., 2003. Seven decades of stand development in mixed and pure stands of conifers and nitrogen-fixing red alder. Can J For Res 33, 2274-2279. http://dx.doi.org/10.1139/x03-158

Buresti E., Frattegiani M., 1994. First results of a mixed plantation with high quality timber broadleaves and N-fixing trees. In: Mixed stands. Research plots, measurements and results. Models (Costa M.P., Preuhsler T., eds). ISA/UTL, Lisbon. pp. 219-228.

Caldwell B.A., 2005. Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49, 637-644. FAO, 1998. World reference base for soil resources. World Soil Resources Reports, Rome, 84. 88 pp.

Fonseca S., Afonso O., Ferreira S., Martins A., 2002. Influência da natureza da folhada nas modificações do solo em sistemas florestais: caso de um jovem povoamento de «Robinia pseudoacacia» L. em Trás-os-Montes. Rev. Ciências Agrárias 35, 439-444.

Friedel J.K., Munch J.C., Fischer W.R., 1996. Soil microbial properties and the assessment of available soil organic matter in a haplic luvisol after several years of different cultivation and crop rotation. Soil Biol Biochem 28, 479-488. http://dx.doi.org/10.1016/0038-0717(95)00188-3

Frivold L.H., Kolström T., 1999. Yield and treatment of mixed stands of boreal tree species in Fennoscandia. In: Management of mixed-species forest: silviculture and economics (Olsthoorn A.F.M., Bartelink H.H., Gardiner J.J., Pretzsch H., Hekhuis H.J., Franc A., eds). Institute for Forestry and Nature Research, Wageningen, The Netherlands, IBN Sci Contrib 15. pp. 98-117.

Groffman P.H., 2000. Nitrogen in the environment. In: Handbook of soil science (Sumner M.E., ed). CRC Press, Boca Raton, USA.

Hellmann C., Sutter R., Rascher K.G., Máguas C., Correia O., Werner C., 2011. Impact of an exotic N2-fixing Acacia on composition and N status of a native Mediterranean community. Acta Oecologica 37, 43-50. http://dx.doi.org/10.1016/j.actao.2010.11.005

Kara Ö., Bolat I., 2008. Soil microbial biomass C and N changes in relation to forest conversion in the Northwestern Turkey. Land Degrad Develop 19, 421-428 http://dx.doi.org/10.1002/ldr.850

Kelty M.J. (ed.), 1992. Comparative productivity of monocultures and mixed species stands. In: The ecology of mixed species forests. Kluwer Academic Publishers, Dordrecht. pp. 125-141. http://dx.doi.org/10.1007/978-94-015-8052-6_8

Kelty M.J., 2006. The role of species mixtures in plantation forestry. For Ecol Manage 233, 195-204.

Li Q.C., Allen H.L., Wollum A.G., 2004. Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control. Soil Biol Biochem 36, 571-579. http://dx.doi.org/10.1016/j.soilbio.2003.12.001

Maag M., Vinther F.P., 1996. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Appl Soil Ecol 4, 5-14. http://dx.doi.org/10.1016/0929-1393(96)00106-0

Mendham D.S., Sankaran K.V., O'connell A.M., Grove T.S., 2002. Eucalyptus globulus harvest residue management effects on soil carbon and microbial biomass at 1 and 5 years after plantation establishment. Soil Biol Biochem 34, 1903-1912. http://dx.doi.org/10.1016/S0038-0717(02)00205-5

Trap J., Bureau F., Vinceslas-Akpa M., Chevalier R., Aubert M., 2009. Changes in soil N mineralization and nitrification pathways along a mixed forest chronosequence. For Ecol Manage 258, 1284-1292.

Patrício M.S, Nunes L.F., Monteiro L.M., Lopes D.M., 2010. Contributo da Robinia pseudoacacia para a valorização de espécies folhosas produtoras de madeira de qualidade: um caso de estudo. Silva Lusitana, nº especial 1-11.

Powlson D.S., Brookes P.C., Christensen B.T., 1987. Measurement of soil microbial biomass provides an early indication of changes in the total soil organic matter due to straw incorporation. Soil Biol Biochem 19, 159-164. http://dx.doi.org/10.1016/0038-0717(87)90076-9

Raison R.J., Connell M.J., Khanna P.K., 1987. Methodology for studying fluxes of soil mineral-N in situ. Soil Biol Biochem 19, 521-530. http://dx.doi.org/10.1016/0038-0717(87)90094-0

REGULAMENTO (CEE) nº 2080/92 do Conselho, Diário Oficial nº L 215 de 30/07/1992, pp. 96-99.

Rice S.K., Westerman B., Federici R., 2004. Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine-oak ecosystem. Plant Ecology 174, 97-107. http://dx.doi.org/10.1023/B:VEGE.0000046049.21900.5a

Slapokas T., Granhall U., 1991. Decomposition of willow-leaf litter in a short-rotation forest in relation to fungal colonization and palatability to earthworms. Biol Fertil Soils 10, 241-248. http://dx.doi.org/10.1007/BF00337374

Solaiman Z., 2007. Measurement of microbial biomass and activity in soil. In: Soil biology (Varma A., Oelmüller R., eds). Vol. 11, Advanced Techniques in Soil Microbiology, Springer-Verlag, Berlin. pp. 202-211.

Tani A., Maltoni A., Mariotti B., Buresti-Lattes E., 2006. Gli impianti da legno di Juglans regia realizzati nell'area mineraria di S. Barbara (AR). Valutazione dell'effetto di piante azotofissatrici accessorie. Forest 3, 588-597. http://dx.doi.org/10.3832/efor0407-0030588

Uri V., Lõhmus K., Tullus H., 2003. Annual net nitrogen mineralization in a grey alder [Alnus incana (L.) moench] plantation on abandoned agricultural land. For Ecol Manage 184, 167-176.

Vandermeer, J., 1989. The Ecology of Intercropping. Cambridge University Press, New York. 237 pp. http://dx.doi.org/10.1017/CBO9780511623523 PMid:2736005

Vance E.D., Brookes P.C., Jenkinson D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19, 703-707. http://dx.doi.org/10.1016/0038-0717(87)90052-6

Vitousek P.M., Walker L.R., 1989. Biological invasion by Myrica faya in Hawai'i: plant demography, nitrogen fixation and ecosystem effects. Ecological Monographs 59, 247-265. http://dx.doi.org/10.2307/1942601

Wardle D.A., 1992. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Reviews 67, 321-358. http://dx.doi.org/10.1111/j.1469-185X.1992.tb00728.x




DOI: 10.5424/fs/20112003-11458

Webpage: www.inia.es/Forestsystems