The relationship between landscape patterns and human-caused fire occurrence in Spain

S. Costafreda-Aumedes, A. Garcia-Martin, C. Vega-Garcia


Aim of study: Human settlements and activities have completely modified landscape structure in the Mediterranean region. Vegetation patterns show the interactions between human activities and natural processes on the territory, and allow understanding historical ecological processes and socioeconomic factors. The arrangement of land uses in the rural landscape can be perceived as a proxy for human activities that often lead to the use, and escape, of fire, the most important disturbance in our forest landscapes. In this context, we tried to predict human-caused fire occurrence in a 5-year period by quantifying landscape patterns.

Area of study: This study analyses the Spanish territory included in the Iberian Peninsula and Balearic Islands (497,166 km2).

Material and Methods: We evaluated spatial pattern applying a set of commonly used landscape ecology metrics to landscape windows of 10x10 sq km (4751 units in the UTM grid) overlaid on the Forest Map of Spain, MFE200.

Main results: The best logistic regression model obtained included Shannon’s Diversity Index, Mean Patch Edge and Mean Shape Index as explicative variables and the global percentage of correct predictions was 66.3 %.

Research highlights: Our results suggested that the highest probability of fire occurrence at that time was associated with areas with a greater diversity of land uses and with more compact patches with fewer edges.

Keywords: human-caused wildfires; landscape ecology; logistic regression.

Full Text:



Badia-Perpinya A, Pallares-Barbera M, 2006. Spatial distribution of ignitions in Mediterranean periurban and rural areas: the case of Catalonia. Int J Wildland Fire 15: 187-196.

Chang Y, He HS, Bishop I, Hu Y, Bu R, Xu C, Li X, 2007. Long-term forest landscape responses to fire exclusion in the Great Xing'an Mountains, China. Int J Wildland Fire 16: 34-44.

Chuvieco E, 1996. Fundamentos de Teledetección Espacial. Ediciones RIALP, SA.

Chuvieco E, González I, Verdú F, Aguado I, Yebra M, 2009. Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem. Int J Wildland Fire 18: 430-441.

Congalton RG, Green K, 1999. Assessing the accuracy of remotely sensed data: principles and practices. Lewis Publications, Boca Raton.

De Aranzábal I, Schmitz MF, Aguilera P, Pineda FD, 2008. Modelling of landscape changes derived from the dynamics of socio-ecological systems. A case of study in a semiarid Mediterranean landscape. Ecol Ind 8: 672-685.

Díaz-Delgado R, Lloret F, Pons X, 2004. Spatial patterns of fire occurrence in Catalonia, NE, Spain. Landscape Ecol 19: 731-745.

Echeverría C, Newton AC, Lara A, Benayas JMR, Coomes DA, 2007. Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Global Ecol Biogeogr 16: 426-439.

Elkie PC, Rempel RS, Carr AP, 1999. Patch Analyst User's Manual. A tool for quantifying landscape structure. Northwest Science and Technology. Ontario. Canada.

ESRI (Environmental Systems Research Institute) Inc, 2009. ArcGis 9.3 GIS. Geostatistical Analyst. ESRI, Redlands, CA, USA.

EEA (European Environment Agency), 2007. European forest types. Categories and types for sustainable forest management reporting and policy. EEA, Copenhagen, Denmark.

Farina A, 2006. Principles and methods in landscape ecology: towards a science of landscape. Springer, Dordrecht.

Ferraz SFDB, Vettorazzi CA, Theobald DM, 2009. Using indicators of deforestation and land-use dynamics to support conservation strategies: a case study of central Rondônia, Brazil. For Ecol Manage 257: 1586-1595.

Forman RTT,1995. Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge etc.

Frohn RC, 1998. Remote sensing for landscape ecology: new metric indicators for monitoring, modeling, and assessment of ecosystems. CRC.

Fuller DO, 2001. Forest fragmentation in Loudoun County, Virginia, USA evaluated with multitemporal Landsat imagery. Landscape Ecol 16: 627-642.

Gallant AL, Hansen AJ, Councilman JS, Monte DK, Betz DW, 2003. Vegetation dynamics under fire exclusion and logging in a Rocky Mountain watershed, 1856-1996. Ecol Appl 13: 385-403.[0385:VDUFEA]2.0.CO;2

Hair JF, 1999. Multivariate data analysis, 5ª ed. Prentice- Hall, Madrid. Spain.

Hatala JA, Crabtree RL, Halligan KQ, Moorcroft PR, 2010. Landscape-scale patterns of forest pest and pathogen damage in the Greater Yellowstone Ecosystem. Remote Sens Environ 114: 375-384.

Henry MC, Yool SR, 2004. Assessing relationships between forest spatial patterns and fire history with fusion of optical and microwave remote sensing. Geocarto Int 19: 25-37.

Hernández-Stefanoni JL, 2005. Relationships between landscape patterns and species richness of trees, shrubs and vines in a tropical forest. Plant Ecol 179: 53-65.

Jamnick MS, Beckett DR, 1987. A logit analysis of private woodlot owners harvesting decisions in New-Brunswick. Can J For Res 18: 330-336.

Lloret F, Calvo E, Pons X, Díaz-Delgado R, 2002. Wildfires and landscape patterns in the Eastern Iberian peninsula. Landscape Ecol 17: 745-759.

Löfman S, Kouki J, 2003. Scale and dynamics of a transforming forest landscape. Forest Ecol Manag 175: 247-252.

Martell DL, Otukol S, Stocks BJ, 1987. A logistic model for predicting daily people-caused forest fire occurrence in Ontario. Can J For Res 17: 394-401.

Martínez J, Vega-García C, Chuvieco E, 2009. Human-caused wildfire risk rating for prevention planning in Spain. J Environ Manage 90: 1241-1252. PMid:18723267

McGarigal K, Cushman M, Ene E, 2002. FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Available at the following web site:

MAGRAMA, 2010. Forest Fires in Spain 2008, Area of Defense Against Forest Fires.

MAGRAMA, 2011. Mapa Forestal de España [on line]. Available in: [6 October, 2010].

Moreno JM, 2007. Cambio global e incendios forestales: una visión desde Espa-a. 4ª Conferencias Internacionales sobre Incendios Forestales, 13-17 de mayo de 2007, Sevilla, España.

Naveh Z, Lieberman AS, 1994. Landscape ecology: theory and application, 2nd ed. Springer-Verlag, New York.

Ortega M, Bunce RGH, García del Barrio JM, Elena- Rosselló R, 2008. The relative dependence of Spanish landscape pattern on environmental and geographical variables over time. Inv Agr Sist Rec For 17: 114-129.

Ortega M, Saura S, González-Ávila S, Gómez-Sanz V, Elena- Rosselló R, 2012. Landscape vulnerability to wildfires at the forest-agriculture interface: half century patterns in Spain assessed through the SISPARES monitoring framework. Agroforest Syst 85: 331-349.

Padilla M, Vega-García C, 2011. On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. Int J Wildland Fire 20: 46-58.

Pausas JG, 1999. Mediterranean vegetation dynamics: modelling problems and functional types. Plant Ecol 140: 27-39.

Pausas JG, 2006. Simulating Mediterranean landscape pattern and vegetation dynamics under different fire regimes. Plant Ecol 187: 249-259.

Pickett ST, White PS, 1985. The ecology of natural disturbance and patch dynamics. Academic Press, San Diego etc.

Regato P, Castejón M, Tella G, Giménez S, Barrera I, Elena- Rosselló R, 1999. Cambios recientes en los paisajes de los sistemas forestales mediterráneos de Espa-a. Inv Agr Sist Rec For 1: 383-398.

Riaño D, Salas J, Chuvieco E, 2001. Fuel type mapping from remote sensing data: contributions to a sustainable environmental development. Estudios Geograficos: 309-333.

Romero MA, Sánchez JE, Jiménez JJ, Belbahri L, Trapero A, Lefort F et al., 2007. New Pythium taxa causing root rot on Mediterranean Quercus species in south-west Spain and Portugal. J Phytopathol 155: 289-295.

Romero-Calcerrada R, Novillo CJ, Millington JDA, Gómez- Jiménez I, 2008. GIS analysis of spatial patterns of human- caused wildfire ignition risk in the SW of Madrid (Central Spain). Landscape Ecol 23: 341-354.

Romero-Calcerrada R, Perry GLW, 2004. The role of land abandonment in landscape dynamics in the SPA 'Encinares del río Alberche y Cofio, Central Spain 1984-1999. Landscape Urban Plan 66: 217-232.

Rothermel RC, 1972. A mathematical model for predicting fire spread in wildland fuels, Res Pap INT-115. Ogden, UT: US Department of Agriculture, Intermountain Forest and Range Experiment Station.

Ruiz de la Torre J, 1990. Mapa Forestal de España. Memoria general.

Ruiz-Mirazo J, Martínez-Fernández J, Vega-García C, 2012. Pastoral wildfires in the Mediterranean: understanding their linkages to land cover patterns in managed landscapes. J Environ Manage 98: 43-50. PMid:22245863

Saura S, 2002. Effects of minimum mapping unit on land cover data spatial configuration and composition. Int J Remote Sens 23: 4853-4880.

Saura S, 2010. Del rodal al paisaje: un cambio de escala, nuevas perspectivas para la planificación y ordenación forestales. Conferencias y Ponencias del 5° Congreso Forestal Español. Cuad Soc Esp Cienc For 31: 213-239.

Serra P, Pons X, Saurí D, 2008. Land-cover and land-use change in a Mediterranean landscape: a spatial analysis of driving forces integrating biophysical and human factors. Appl Geogr 28: 189-209.

Silva LC, Barroso IM, 2004. Regresión logística. La Muralla, Madrid. España.

SPSS Inc, 2006.SPSS 15: Command Syntax Reference, Chicago, III.

Stolle F, Lambin EF, 2003. Interprovincial and interannual differences in the causes of land-use fires in Sumatra, Indonesia. Environ Conserv 30: 375-387.

Sturtevant BR, Cleland DT, 2007. Human and biophysical factors influencing modern fire disturbance in northern Wisconsin. Int J Wildland Fire 16: 398-413.

Torre-Antón M, 2010. La situación actual de los incendios forestales en Espa-a. Conferencias y Ponencias del 5º Congreso Forestal Espa-ol. Cuad Soc Esp Cienc For 31: 179-195.

Vega-García C, Woodard PM, Titus SJ, Adamowicz WL, Lee BS, 1995. A logit model for predicting the daily occurrence of human caused forest fires. Int J Wildland Fire 5: 101-111.

Vega-García C, Chuvieco E, 2006. Applying local measures of spatial heterogeneity to Landsat-TM images for predicting wildfire occurrence in Mediterranean landscapes. Landscape Ecol 21: 595-605.

Viegas DX, Bovio G, Ferreira A, Nosenzo A, Sol B, 1999. Comparative study of various methods of fire danger evaluation in southern Europe. Int J Wildland Fire 9: 235-246.

Vilar del Hoyo L, Martín Isabel MP, Martínez Vega FJ, 2008. Empleo de técnicas de regresión logística para la obtención de modelos de riesgo humano de incendio forestal a escala regional. Boletín de la AGE 47: 5-29

Zhang Y, Guindon B, 2005. Landscape analysis of human impacts on forest fragmentation in the Great Lakes region. Can J Remote Sens 31: 153-166.

DOI: 10.5424/fs/2013221-02685