Dynamic growth and yield model for Black pine stands in Spain

J. V. Mora, M. del Rio, A. Bravo-Oviedo

Abstract


In a forestry context, modelling stand development over time relies on estimates of different stand characteristics obtained from equations which usually constitute a multivariate system. In this study we have developed a stand growth model for even-aged stands of Black pine (Pinus nigra Arn.) in Spain. The 53 plots used to fit the equations came from the permanent sample plot network established by the Forest Research Centre (INIA) in 1963 and 1964 in the main distribution regions of Black pine. The model is made up of a system of equations to predict growth and yield in volume and basal area. In the fitting phase we took into account the correlation between the measurements within the same plot and the cross-equation residual correlations. The model incorporates a control function to estimate the thinning effect and a function for predicting the reduction in tree number due to regular mortality. In addition, we use the three parameter Weibull distribution function to estimate the number of trees in each diameter class by recovering the parameters using the moment method. The developed model is useful for simulating the evolution of even-aged stands with and without thinnings and allows the estimation of number of trees by diameter classes.

Full Text:

PDF

References


Álvarez-González J. 1997. Análisis y caracterización de las distribuciones diamétricas de Pinus pinaster Ait. en Galicia. Tesis Doctoral. Universidad Politécnica de Madrid. PMCid:1218424

Barrio-Anta M, Castedo-Dorado F, Diéguez-Aranda U, Álvarez- González JG, Parresol BR, Rodríguez-Soalleiro R. 2006. Development of a basal area growth system for maritime pine in northwestern Spain using the generalized algebraic difference approach. Can J For Res 36, 1461- 1474. http://dx.doi.org/10.1139/x06-028

Baskerville G. 1972. Use of logarithmic regression in the estimation of plant biomass. Can J For Res 2, 49-53. http://dx.doi.org/10.1139/x72-009

Bautista R, Alonso A, Grau J, Gómez J. 2001. Tablas de producción de selvicultura media para las masas de Pinus Nigra Arn. de la Sierra de Cazorla, Segura y las Villas. Actas del III Congreso Forestal Nacional, Granada, 25-28 septiembre. Tomo III, pp. 854-859.

Bravo F, Álvarez-Gonzalez JG, Río M, Barrio M, Bonet JA, Bravo-Oviedo A, Calama R, Castedo-Dorado F, Crecente- Campo F, Condes S, Dieguez-Aranda U, Gonzalez-Martinez SC, Lizarralde I, Nanos N, Madrigal A, Martínez-Millán FJ, Montero G, Ordóñez C, Palahí M, Piqué M, Rodríguez F, Rodríguez-Soalleiro R, Rojo A, Ruiz-Peinado R, Sánchez- González M, Trasobares A, Vázquez-Piqué J . 2011. Growth and yield models in Spain: historical overview, contemporary examples and perspectives. Forest Systems 20(2), 315-328.

Bravo-Oviedo A, Río M, Montero G. 2004. Site index curves and growth model for Mediterranean maritime pine (Pinus pinaster Ait.) in Spain. For Ecol Manage 201, 187-197.

Bravo-Oviedo A, Sterba H, Río M, Bravo F. 2006. Competition- induced mortality for Mediterranean Pinus pinaster Ait. and P. sylvestris L. For Ecol Manage 222(1-3), 88-98.

Cao Q. 2004. Predicting parameters of a Weibull function for modeling diameter distribution. For Sci 50, 682-685.

Castedo-Dorado F, Diéguez-Aranda U, Barrio-Anta M, Álvarez- González JG. 2007. Modelling stand basal area growth for radiata pine plantations in Northwestern Spain using the GADA. Ann For Sci 64, 609-619.

http://dx.doi.org/10.1051/forest:2007039

Clutter JL. 1963. Compatible growth and yield models for loblolly pine. For Sci 9, 354-371.

Curtis R. 1967. Height-diameter and height-diameter-age equations for second-growth Douglas-fir. For Sci 13, 365-375.

Diéguez-Aranda U, Castedo-Dorado F, Álvarez-González JG, Rodríguez-Soalleiro R. 2005. Modelling mortality of Scots pine (Pinus sylvestris L.) plantations in the northwest of Spain. Eur J For Res 124, 143-153.

http://dx.doi.org/10.1007/s10342-004-0043-5

Eid T, Tuhus E. 2001. Models for individual tree mortality in Norway. For Ecol Manage 154, 69-84.

Gadow K, Rojo A, Álvarez-González J, Rodríguez-Soalleiro R. 1999. Ensayos de crecimiento. Parcelas permanentes, temporales y de intervalo. Invest Agrar: Sist Recur For 8, 299-310.

García O. 1988. Growth modelling-a (re) view. NZ For 33, 14-17.

García O. 1990. Growth of thinned and pruned stands. En: New approaches to spacing and thinnig in plantation forestry: Proceedings of the IUFRO symposium. (Jamen N, Tarlton GL, eds). Ed New Zealand Ministry of Forestry, Rotorua, 10-14 April 1989, FRI Bulletin 151.

García O. 1994. The state-space approach in growth modelling. Can J For Res 24, 1894-1903. http://dx.doi.org/10.1139/x94-244

García O. 2003. Dimensionality reduction in growth models: an example. Forest biometry, Modelling and Information Sciences 1, 1-15.

Gómez Loranca J. 1996. Pinus nigra Am. en el Sistema Ibérico: Tablas de crecimiento y producción. Monografías INIA 93, 106 pp.

Gregoire T, Schabenberger O, Barret J. 1995. Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements. Can J For Res 25, 137-156.

http://dx.doi.org/10.1139/x95-017

Harvey A. 1976. Estimating regression models with multiplicative heteroscedasticity. Econometrica 44(3), 461-465. http://dx.doi.org/10.2307/1913974

Jutras S, Hokka H, Alenius V, Salminen H. 2003. Modeling mortality of individual trees in drained peatland sites in Finland. Silva Fenn 37, 235-251.

Knoebel B, Burkhart H, Beck D. 1986. A growth and yield model for thinned stands of yellow-poplar. For Sci Monogr 27, 62 pp.

Laird N, Ware J. 1982. Random-effects models for longitudinal data. Biometrics 38, 963-974. http://dx.doi.org/10.2307/2529876 PMid:7168798

Lee Y. 1971. Predicting mortality for even-aged stands of lodgepole pine. For. Chron 47, 29-32.

Martín-Benito D, Gea-Izquierdo G, Río M, Cañellas I. 2008. Long-term trends in dominant-height growth of black pine using dynamic models. For Ecol Manage 256, 1230-1238.

Martínez-Millán J, Ara P, González I. 1993. Ecuaciones alométricas de tres variables: estimación des volumen, crecimiento y porcentaje de corteza de las principales especies maderables españolas. Invest Agrar: Sist Recur For 2, 211-228.

Mateus A, Tomé M. 2011. Modelling the diameter distribution of eucalyptus plantations with Johnson's SB probability density function: parameters recovery from a compatible system of equations to predict stand variables. Ann For Sci 68, 1-11.

Palahí M, Grau J. 2003. Preliminary site index model and individual-tree growth and mortality models for black pine (Pinus nigra Arn.) in Catalonia (Spain). Invest Agrar: Sist Recur For 12, 137-148.

Pienaar L, Harrison W. 1989. Simultaneous growth and yield prediction equations for Pinus elliottii plantations in Zululand. South African Forestry Journal 149, 48-53. http://dx.doi.org/10.1080/00382167.1989.9628992

Reynolds M. 1984. Estimating the error in model predictions. For Sci 30, 454-469.

Río M, Montero G. 2001. Modelo de simulación de claras en masas de Pinus sylvestris L. Monografías INIA: Forestal Nº 3, Ministerio de Ciencia y Tecnología. pp. 114 + CD.

SAS Institute 2008. SAS/ETS® 9.2 User's Guide. SAS Institute Inc., Cary, NC.

SAS Institute 2009. SAS/STAT® 9.2 User's Guide, second ed. SAS Institute Inc., Cary, NC.

Snowdon P. 1991. A ratio estimator for bias correction in logarithmic regressions. Can J For Res 21, 720-724. http://dx.doi.org/10.1139/x91-101

Sullivan A, Clutter J. 1972. A simultaneous growth and yield model for loblolly pine. For Sci 18, 76-86.

Vanclay J. 1994. Modelling forest growth and yield. Applications to mixed tropical forests. CAB International, Wallingford (RU). 198 pp.

Woollons R. 1998. Even-aged stand mortality estimation through a two-step regression process. For Ecol Manage 105, 189-195.

Yang Y, Titus S, Huang S. 2003. Modeling individual tree mortality for white spruce in Alberta. Ecol Model 163, 209-222.

http://dx.doi.org/10.1016/S0304-3800(03)00008-5

Yao X, Titus S, Macdonald S. 2001. A generalized logistic model of individual tree mortality for aspen, white spruce, and lodgepole pine in Alberta mixedwood forests. Can J For Res 31, 283-291.

Zellner A. 1962. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J Am Stat Asso 57, 348-368. http://dx.doi.org/10.1080/01621459.1962.10480664

Zellner A, Theil H. 1962. Three-stage least squares: simultaneous estimation of simultaneous equations. Econometrica 30, 54-78. http://dx.doi.org/10.2307/1911287

Zhao D, Borders B, Wang M. 2006. Survival model for fusiform rust infected loblolly pine plantations with and without mid-rotation understory vegetation control. For Ecol Manage 235, 232-239.

Zhao D, Borders B, Wang M, Kane M. 2007. Modeling mortality of second-rotation loblolly pine plantations in the Piedmont/Upper Coastal Plain and Lower Coastal Plain of the southern United States. For Ecol Manage 252, 132-143.




DOI: 10.5424/fs/2012213-02722

Webpage: www.inia.es/Forestsystems