Biomass expansion factors for Eucalyptus globulus stands in Portugal

P. Soares, M. Tomé

Abstract


One of several procedures for estimating carbon stocks in forests is the estimation of tree or stand biomass based on forest inventory data. The two approaches normally used to convert field measurements of trees to stand biomass values are allometric biomass equations and biomass expansion factors (BEFs). BEFs are used in published National Forest Inventory results in which biomass is not estimated or as a complement of growth models that do not include biomass predictions. In this paper, the effectiveness of BEFs for estimating total stand biomass in Portuguese Eucalyptus globulus plantations was analyzed. Here, BEF is defined as the ratio of total stand biomass (aboveground biomass plus root biomass) to stand volume with bark. To calculate total biomass, an equation was developed to estimate root biomass as a function of aboveground biomass. Changes of BEF with stand variables were analyzed. Strong relationships were observed between BEF and stand age, stand basal area, stand volume and dominant height. Consequently, an equation to predict BEF as a function of stand variables was fitted, and dominant height was selected as the predictor stand variable. Estimates of total stand biomass based on individual tree allometric equations were compared with estimates obtained with a constant BEF (0.77), used in the Portuguese National Inventory Report on Greenhouse Gases, and with estimates obtained using the dominant height-dependent BEF equation developed in this work. The BEF prediction model proposed in this work may be used to improve E. globulus Portuguese biomass estimates when tree allometric equations cannot be used.


References


AFN, 2010. 5º Inventário Florestal Nacional, 2005-2006, Relatório Final. Autoridade Florestal Nacional, Lisboa, Portugal (in Portuguese).

António N., Tomé M., Tomé J., Soares P., Fontes L., 2007. Effect of tree, stand and site variables on the allometry of Eucalyptus globulus tree biomass. Can J For Res 37, 895-906. http://dx.doi.org/10.1139/X06-276

Bartelink H.H., 1996. Allometric relationships on biomass and needle area of Douglas fir. For Ecol Manag 86, 193- 203.

Brown S., 2002. Measuring carbon in forests: current status and future challenges. Environ Pollut 116, 363-372. http://dx.doi.org/10.1016/S0269-7491(01)00212-3

Cairns M.A., Brown S., Helmer E.H., Baumgardner G.A., 1997. Root biomass allocation in the world’s upland forests. Oecologia 111, 1-11. http://dx.doi.org/10.1007/s004420050201

Chhabra A., Palria S., Dadhwal V.K., 2002. Growing stockbased forest biomass estimate for India. Biomass and Bioenergy 22, 187-194. http://dx.doi.org/10.1016/S0961-9534(01)00068-X

Fabião A., Madeira M., Steen E., 1987. Root mass in plantations of Eucalyptus globulus in Portugal in relation to soil characteristics. Arid Soil Res. Rehabil 1, 185-194. http://dx.doi.org/10.1080/15324988709381143

Fabião A., Madeira M., Steen E., Kätterer T., Araújo C., 1995. Development of root biomass in an Eucalyptus globulus plantation under different water and nutrient regimes. Plant and Soil 168-169, 215-223. http://dx.doi.org/10.1007/BF00029331

Fang J.Y., Chen A., Peng C., Zhao S., Ci L., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Sci 292, 2320-2322. http://dx.doi.org/10.1126/science.1058629 PMid:11423660

IPCC, 2003. Good practice guidance for Land Use, Land-Use Change and Forestry (LULUCF); Chapter 4: Supplementary methods and good practice guidance arising from the Kyoto Protocol; Section 3: LULUCF projects. Institute for Global Environmental Strategies, Kanagawa, Japan.

Jalkanen A., Mäkipää R., Ståhl G., Lehtonen A., Petersson H., 2005. Estimation of the biomass stock of trees in Sweden: comparison of biomass equations and age-dependent biomass expansion factors. Ann For Sci 62, 845-851. http://dx.doi.org/10.1051/forest:2005075

Joosten R., Schumacher J., Wirth C., Schulte A., 2004. Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany. For Ecol Manag 189, 87-96.

Klepper B., 1991. Root-shoot relationships. In: Plant roots: the hidden half (Waisel Y., Eshel A., Kafkafi U., eds). Marcel Dekker, New York, pp. 265-286.

Landsberg J.J., Waring R.H., 1997. A generalised model of forest productivity using simplified concepts of radiationuse efficiency, carbon balance and partitioning. For Ecol Manag 95, 209-228.

Lehtonen A., Mäkipää R., Heikkinen J., Sievänen R., Liski J., 2004. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For Ecol Manag 188, 211-224.

Lehtonen A., Cienciala E., Ttatarinov F., Mäkipää R., 2007. Uncertainty estimation of biomass expansion factors for Norway spruce in the Czech Republic. Ann For Sci 64, 133-140. http://dx.doi.org/10.1051/forest:2006097

Levy P.E., Hale S.E., Nicoll B.C., 2004. Biomass expansion factors and root:shoot ratios for coniferous tree species in Great Britain. Forestry 77(5), 421-430. http://dx.doi.org/10.1093/forestry/77.5.421

Liski J., Lehtonen A., Palosuo T., Peltoniemi M., Eggers T., Muukkonen P., Mäkipää R., 2006. Carbon accumulation in Finland’s forests 1922-2004 — an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil. Ann For Sci 63, 687-697. http://dx.doi.org/10.1051/forest:2006049

Löwe H., Seufert G., Raes F., 2000. Comparison of methods used within Member States for estimating CO2 emissions and sinks according to UNFCCC and EU Monitoring Mechanism: forest and other wooded land. Biotechnol Agron Soc Environ 4(4), 315-319.

Myers R., 1986. Classical and modern regression with applications. Duxbury Press, Boston, Massachusetts. Monserud R.A., Marshall J.D., 1999. Allometric crown relations in three Northern Idaho conifer species. Can J For Res 29, 521-535.

Nabuurs G.J., Ravindranath N.H., Paustian K., Freibauer A., Hohenstein W., Makundi W., 2003. LUCF sector good practice guidance. In: Good practice guidance for Land Use, Land-Use Change and Forestry (Penman J., Gytarsky M., Hiraishi T., Krug T., Kruger D., Pipatti R., Buendia L., Miwa K., Ngara T., Tanabe K., Wagner F., eds). IPCC National Greenhouse Gas Inventories Programme, pp. 3.1-3.185.

Oliveira T., 2008. Sistema para a predição de biomassa total e por componentes em povoamentos puros regulares de Eucalyptus globulus Labill. Master’s thesis. Universidade Técnica de Lisboa, Instituto Superior de Agronomia, Lisboa, Portugal. 38 pp. + anexes [in Portuguese].

Parresol B., 1999. Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45(4), 573-593.

Peichl M., Arain M.A., 2007. Allometry and partitioning of above and belowground tree biomass in an age-sequence of white pine forests. For Ecol Manag 253, 68-80.

Pereira J.S., Linder S., Araújo M.C., Pereira H., Ericsson T., Borralho N., Leal L.C., 1989. Optimization of biomass production in Eucalyptus globulus plantation. A case study. In: Biomass production by fast-growing trees (Pereira J.S., Landsberg J.J., eds). Kluwer, The Netherlands, pp. 101-121.

Pereira T.C., Seabra T., Maciel H., Torres P., 2010. Portuguese National Inventory Report on Greenhouse Gases, 1990-2008 submitted under the United Nations framework convention on climate change and the Kyoto protocol. Portuguese Environmental Agency, Amadora, Portugal.

Reed D.D., Tomé M., 1998. Total aboveground biomass and net dry matter accumulation by plant component in young Eucalyptus globulus in response to irrigation. For Ecol Manag 103, 21-32.

Resh S.C., Battaglia M., Worledge D., Ladiges S., 2003. Coarse root biomass for eucalypt plantations in Tasmania, Australia: sources of variation and methods for assessment. Trees 17, 389-399. http://dx.doi.org/10.1007/s00468-003-0250-6

Ribeiro O., Lautensach H., 1999. Geografia de Portugal, II. O ritmo climático e a paisagem. 4ª edição, Edições João Sá da Costa, Lda, Lisboa, Portugal. 287 pp. [in Portuguese].

SAS Institute INC., 2004. SAS/STAT 9.1 User’s Guide. SAS Institute Inc., Cary, N. C.

Satoo, T., Madgwick, H.A.I., 1982. Forest Biomass. Forestry Sciences, Martinus Nijhoff/Dr. W. Junk Publishers, The Hague.

Soares P., Tomé M., 2001. A tree crown ratio prediction equation for eucalypt plantations. Ann For Sci 58(2), 193-202. http://dx.doi.org/10.1051/forest:2001118

Soares P., Tomé M., 2002. Height-Diameter equation for first rotation eucalypt plantations in Portugal. For Ecol Manag 166, 99-109.

Soares P., Tomé M., 2004. Analysis of the effectiveness of biomass expansion factors to estimate stand biomass. In: Hasenauer H., Makela A. (eds), Modeling forest production. Dep. Forest and Soil Sciences, BOKU Univ. Natural Resources and Applied Life Sciences, Vienna, pp 368-374.

Tobin B., Nieuwenhuis M., 2007. Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong). Carr.) in Ireland. Eur J For Res 126, 189-196. http://dx.doi.org/10.1007/s10342-005-0105-3

Tomé M., Ribeiro F., Faias S., 2001. Equações para estimação de volumes totais e mercantis da árvore para Eucalyptus globulus L. em Portugal. Relatórios Técnico-científicos do GIMREF, nº 4, Dep Eng Florestal, Instituto Superior Agronomia, Lisboa, Portugal [in Portuguese].

Tomé M., Oliveira T., Soares P., 2006. O modelo Globulus 3.0. Publicações GIMREF - RC2/2006. Dep Eng Florestal, Instituto Superior Agronomia, Lisboa, Portugal [in Portuguese].

Vanclay J.K., Skovsgaard J.P., 1997. Evaluating forest growth models. Ecol Modelling 98, 1-12. http://dx.doi.org/10.1016/S0304-3800(96)01932-1

Zianis D., Muukkonen P., Mäkipää R., Mencuccini M., 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica, Monographs 4, 63 pp.




DOI: 10.5424/fs/2112211-12086

Webpage: www.inia.es/Forestsystems