Adaptability to climate change in forestry species: drought effects on growth and wood anatomy of ponderosa pines growing at different competition levels

  • M.E. Fernández Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET
  • J.E. Gyenge Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET.
  • M.M. de Urquiza INTA Estación Experimental Agropecuaria Bariloche, CC 277, 8400 San Carlos de Bariloche.
  • S. Varela INTA Estación Experimental Agropecuaria Bariloche, CC 277, 8400 San Carlos de Bariloche.

Abstract

More stressful conditions are expected due to climatic change in several regions, including Patagonia, South-America. In this region, there are no studies about the impact of severe drought events on growth and wood characteristics of the most planted forestry species, Pinus ponderosa (Doug. ex-Laws). The objective of this study was to quantify the effect of a severe drought event on annual stem growth and functional wood anatomy of pines growing at different plantation densities aiming to understand how management practices can help to increase their adaptability to climate change. Growth magnitude and period, specific hydraulic conductivity, and anatomical traits (early- and latewood proportion, lumen diameter, cell-wall thickness, tracheid length and bordered pit dimensions) were measured in the ring 2008-2009, which was formed during drought conditions. This drought event decreased annual stem growth by 30-38% and 58-65% respect to previous mean growth, in open vs. closed stand trees, respectively, indicating a higher sensitivity of the latter, which is opposite to reports from the same species growing in managed native forests in USA. Some wood anatomical variables did differ in more water stressed trees (lower cell wall thickness of early wood cells and higher proportion of small-lumen cells in latewood), which in turn did not affect wood function (hydraulic conductivity and resistance to implosion). Other anatomical variables (tracheid length, pit dimensions, early- and latewood proportion, lumen diameter of early wood cells) did not differ between tree sizes and plantation density. The results suggest that severe drought affects differentially the amount but not the function and quality of formed wood in ponderosa pine growing at different competition levels.

Downloads

Download data is not yet available.

References

Abe H., Nakai T., 1999. Effect of the water status within a tree on tracheid morphogenesis in Cryptomeria japonica D. Don. Trees Struc Func 14, 124-129.

Andenmatten E., Rey M., Letourneau F., 2002. Pino ponderosa (Pinus ponderosa (Dougl) Laws.). Tabla de volumen estándar de aplicación en la región Andina de Río Negro y Chubut. Proceedings of IV Jornadas Forestales Patagónicas, San Martín de los Andes, Neuquén, Argentina, Vol. I, pp. 266-271.

Antonova G.F., Stasova V.V., 1997. Effects of environmental factors on wood formation in larch (Larix sibirica Ldb.) stems. Trees Struc Func 11, 462-468.

Baver L.D., Gardner W.H., Gardber W.R., 1972. Soil physics. Ed J Wiley & Sons. 549 pp.

Caffera R.M., 2005. Escenarios probables de temperatura media para Argentina hasta 2030. Fundación Di Tella. Proyecto PNUD/ARG /01/2003.

Cai J., Tyree M.T., 2010. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant, Cell & Environment 33, 1059-1069. PMid:20199629

Campelo F., Nabais C., Freitas H., Gutierrez E., 2006. Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Ann For Sci 64, 229-238.

Carpenter A.E., Jones T.R., Lamprecht M.R., Clarke C., Kang I.H., Friman O., Guertin D.A., Chang J.H., Lindquist R.A., Moffat J., Golland P., Sabatini D.M., 2006. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7: R100. PMID: 17076895. http://dx.doi.org/10.1186/gb-2006-7-10-r100 PMid:17076895    PMCid:1794559

Cregg B.M., Dougherty P.M., Hennessey T.C., 1988. Growth and wood quality of young loblolly pine trees in relation to stand density and climatic factors. Can J For Res 18, 851-858. http://dx.doi.org/10.1139/x88-131

D’ambrogio De Argüeso A., 1986. Manual de Técnicas en Histología Vegetal. Ed. Hemisferio Sur S.A., Buenos Aires, Argentina, 83 pp.

Daniels L.D., Veblen T.T., 2004. Spatiotemporal influences of climate on altitudinal treeline in northern Patagonia. Ecology 85, 1284-1296. http://dx.doi.org/10.1890/03-0092

Denne M.P., 1988. Definition of latewood according to Mork (1928). IAWA Bulletin 10, 59-62.

Fernández M.E., Gyenge J.E., Graciano C., Varela S., Dalla Salda G., 2010. Chap. 4: Conductancia y conductividad hidráulica. In: Fernández M.E. and Gyenge J.E. (Eds.), Técnicas de medición en ecofisiología vegetal: conceptos y procedimientos. Ediciones INTA, Buenos Aires, Argentina, ISBN 978-987-1623-76-1; pp. 53-68.

Fundacion Torcuato di Tella e Instituto Torcuato di Tella, 2006. Comunicación Nacional de Cambio Climático: vulnerabilidad de la Patagonia y sur de las provincias de Buenos Aires y La Pampa. Informe Final. 369 pp.

Gaspar M.J., Lousada J.L., Rodrigues J.C., Aguiar A., Almeida M.H., 2009. Does selecting for improved growth affect wood quality of Pinus pinaster in Portugal? For Ecol Manage 258, 115-121.

Gonda H.E., 1998. Height-Diameter and volume equations, growth intercept and needle length as site quality indicators, and yield equations for young ponderosa pine plantations in Neuquén, Patagonia, Argentina. PhD Thesis, Oregon State University, USA, 224 pp.

Guller B., 2007. The effects of thinning treatments on density, MOE, MOR and maximum crushing strength of Pinus brutia Ten. Word. Ann For Sci 64, 467-475. http://dx.doi.org/10.1051/forest:2007024

Gyenge J.E. 2005. Uso de agua y resistencia a la sequía de pino ponderosa y ciprés de la cordillera. PhD Thesis, Univ. Nac. del Comahue, San Carlos de Bariloche, Argentina, 222 pp.

Gyenge J.E., Fernández M.E., Schlichter T.M., 2003. Water relations of ponderosa pines in Patagonia Argentina: implications on local water resources and individual growth. Trees Struc Func 17, 417-423. http://dx.doi.org/10.1007/s00468-003-0254-2

Gyenge J.E., Fernández M.E., Schlichter T.M., 2009. Effect of pruning on branch production and water relations in widely spaced ponderosa pines. Agrofor Sys 77, 223-235. http://dx.doi.org/10.1007/s10457-008-9183-9

Gyenge J.E., Fernández M.E., Schlichter T.M., 2010. Effect of stand density and pruning on growth of ponderosa pines in NW Patagonia, Argentina. Agrofor Sys 78: 233-241. http://dx.doi.org/10.1007/s10457-009-9240-z

Hacke U.G., Sperry J.S., Pockman W.T., Davis S.D., Mcculloh K.A., 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126, 457-461. http://dx.doi.org/10.1007/s004420100628

IPCC, 2007: Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Kolb T.E., Holmberg K.M., Wagner M.R., Stone J.E., 1998. Regulation of ponderosa pine foliar physiology and insect resistance mechanisms by basal area treatments. Tree Physiol 18, 375-381. http://dx.doi.org/10.1093/treephys/18.6.375 PMid:12651362

Lewis A.M., Boose E.R., 1995. Estimating volume flow rates through xylem conduits. Am J Bot 82, 1112-1116. http://dx.doi.org/10.2307/2446063

Licata J., Gyenge J.E., Fernández M.E., Schlichter T.M., Bond B.J., 2008, Increased water use by ponderosa pine plantations in N.W. Patagonia, Argentina, compared with native vegetation. For Ecol Manage 255, 753-764.

Loguercio G.A., Deccechis F., 2006. Forestaciones en la Patagonia andina: potencial y desarrollo alcanzado. Patagonia Forestal (March 2006): 4-6.

Maherali H., Delucia E.H., 2000. Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates. Tree Physiol 20, 859-867. http://dx.doi.org/10.1093/treephys/20.13.859 PMid:11303576

Maherali H., De Lucia E.H., 2001. Influence of climatedriven shifts in biomasa allocation on water transport and storage in ponderosa pine. Oecologia 129, 481-491.

Martínez Meier A., Sánchez L., Pastorino M., Gallo L., Rozenberg P., 2008. What is hot in tree rings? The wood density of surviving Douglas-firs to the 2003 drought and heat wave. For Ecol Manage 256, 837-843.

Masiokas M., Villalba R., 2004. Climatic significance of intra-annual bands in the wood of Nothofagus pumilio in southern Patagonia. Trees Struc Func 18, 696-704. http://dx.doi.org/10.1007/s00468-004-0355-6

Mcdowell N., Adams H., Bailey J., Hess M., Folb T., 2006. Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes. Ecol Applic 16, 1164-1182. http://dx.doi.org/10.1890/1051-0761(2006)016[1164:HMOPPG]2.0.CO;2

Mundo I.A., El Mujtar V.A., Perdomo M.H., Gallo L.A., Villalba R., Barrera M.D., 2010. Austrocedrus chilensis growth decline in relation to drought events in northern Patagonia, Argentina. Trees Struc Func 24, 561-570. http://dx.doi.org/10.1007/s00468-010-0427-8

Rigling A., Bräker O., Schneiter G., Schweingruber F., 2002. Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163, 105-121. http://dx.doi.org/10.1023/A:1020355407821

Sperry J.S., Hacke U.G., Pittermann J., 2006. Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93, 1490-1500. http://dx.doi.org/10.3732/ajb.93.10.1490 PMid:21642096

Spicer R., Gartner B.L., 1998. How does a gymnosperm branch (Pseudotsuga menziesii) assume the hydraulic status of a main stem when it takes over as leader? Plant Cell Environ 21, 1063-1070. http://dx.doi.org/10.1046/j.1365-3040.1998.00355.x

Suarez M.L., Ghermandi L., Kitzberger T., 2004. Factors predisposing episodic drought-induced tree mortality in Nothofagus– site, climatic sensitivity and growth trends. J Ecol 92, 954-966. http://dx.doi.org/10.1111/j.1365-2745.2004.00941.x

Villalba R., Veblen T.T., 1998. Influences of large-scale climatic variability on episodic tree mortality in northern Patagonia. Ecology 79, 2624-2640. http://dx.doi.org/10.1890/0012-9658(1998)079[2624:IOLSCV]2.0.CO;2

Villalba R., Boninsegna J.A., Veblen T.T., Schmelter A., Rubulis S., 1997. Recent trends in tree-ring records from high elevation sites in the Andes of Northern Patagonia. Clim Change 36, 425-454. http://dx.doi.org/10.1023/A:1005366317996

Warren C.R., Mcgrath J.F., Adams M.A., 2001. Water availability and carbon isotope discrimination in conifers. Oecologia 127, 476-486. http://dx.doi.org/10.1007/s004420000609

Zingoni M.I., Andía I.R., Mele U.E., 2005. Longitud de las traqueidas de pino ponderosa en relación a su posición en el tronco. Bol Soc Arg Bot 40 (Supl.): 151-152.

Published
2012-03-28
How to Cite
Fernández, M., Gyenge, J., de Urquiza, M., & Varela, S. (2012). Adaptability to climate change in forestry species: drought effects on growth and wood anatomy of ponderosa pines growing at different competition levels. Forest Systems, 21(1), 162-174. https://doi.org/10.5424/fs/2112211-12586
Section
Research Articles