Resource communication. sIMfLOR – platform for portuguese forest simulators

S. P. Faias, J. H. N. Palma, S. M. Barreiro, J. A. Paulo, M. Tomé

Abstract


In the last decades there has been an increasing number of forest models developed for the main species of the Portuguese forest. Forest models support management decisions by predicting long term stand development under alternative scenarios and taking into account all the components of the ecosystem. However, in most cases, there is a gap between the models developed and their application by decision-makers. The platform for Portuguese Forest Simulators (sIMfLOR) tries to overcome this gap integrating a wide variety of forest models into simulators and providing a baseline tool for forest managers in Portugal. As an integrated modular platform, sIMfLOR makes available forest simulators for the Portuguese forest with user-friendly interfaces to facilitate the introduction of the information for the simulators. The platform displays stand and regional simulators, interfaces to generate required inputs and also auxiliary tools. As the platform focus on end-users, it allows visualization of the simulators outputs in default graphics which can easily be edited by users. The sIMfLOR platform can be permanently accessed at http://www.isa.utl.pt/cef/forchange/fctools.


Full Text:

PDF

References


AFN. 2010. Inventário Florestal Nacional. Portugal Continental. IFN5, 2005-2006. Autoridade Florestal Nacional. Lisboa, Portugal. 209 pp.

Almeida A, Tomé J, Tomé M. 2010. Development of a system to predict the evolution of individual tree mature cork caliber over time. Forest Ecology and Management 260, 1303-1314. Available in http://dx.doi.org/10.1016/j. foreco.2010.07.017.

ANEFA. 2011. Matriz de Referência com Custos Mínimos e Máximos para as Principais Operações (Re)Arborização e Execução de Infraestruturas para 2011. Comissão de Acompanhamento de Operações florestais (CAOF). Available in http//www.anefa.pt [7 Dec 2011] [In Portuguese].

Bailey RL. 1980. Individual tree growth derived from diameter distribution models. Forest Science 26, 626-632.

Barreiro S, Tomé M, Tomé J. 2004. Modeling growth of unknown age even-aged eucalyptus stands. Proceedings of the International Conference on "Modeling Forest Production. Scientific Tools - Data Needs and Sources. Validation and Application" (Hasenauer H, Makela A, eds), Vienna (Austria), 19-22 April, pp. 34-43.

Barreiro S, Tomé M. 2011. SIMPLOT: Simulating the impacts of fire severity on sustainability of eucalyptus forests in Portugal. Ecological Indicators 11, 36-45. Available in http://dx.doi.org/10.1016/j.ecolind.2009.06.015.

http://dx.doi.org/10.1016/j.ecolind.2009.06.015

Barreiro S, Tomé M. 2012. Analysis of the impact of the use of eucalyptus biomass for energy on wood available for eucalyptus forests in Portugal. A simulation study. Ecology and Society 17(2):14. Available in http://dx.doi. org/10.5751/ES-04642-170214

Barreiro S. 2012. Development of forest simulation tools for assessing the impact of different management strategies and climatic changes on wood production and carbon sequestration for Eucalyptus in Portugal. PhD thesis. Universidade Técnica de Lisboa, Instituto Superior de Agronomia, Lisboa, Portugal.

Bravo F, Rodríguez F, Ordóñez AC, Broto M, Lizarralde I, Ruano I, del Río M, Calama R, Diéguez U, Álvarez JG, Vázquez J, Bravo A, Ruiz-Peinado R, Montero G. 2010. Simanfor: aplicación web para la simulación de alternativas selvícolas Montes 100:22-26.

Bravo F, Rodríguez F, Ordóñez CF. 2012. A web-based application to simulate alternatives for sustainable forest management: SIMANFOR. Forest Systems 21(1):4- 8. Available in http://dx.doi.org/ 10.5424/fs/2112211- 01953.

Burkhart HE, Cao QV, Ware KD. 1981. A comparison of growth and yield prediction models for loblolly pine. FWS-2, Virginia Polytechnic Institute and State University, School of Forestry and Wildlife Resources. Blacksburg,Coelho MB, Paulo JA, Palma JHN, Tomé M, 2012. Contribution of cork oak plantations installed after 1990 in Portugal to the Kyoto commitments and to the landowners economy. Forest Policy and Economics 17, 59-68. Available in http://dx.doi.org/10.1016/j.forpol. 2011.10.005.

Collins M, Booth B, Harris G, Murphy J, Sexton D, Webb M. 2006. Towards quantifying uncertainty in transient climate change. Climate Dynamics 27, 127-147. Available in http://dx.doi.org/10.1007/s00382-006-0121-0.

http://dx.doi.org/10.1007/s00382-006-0121-0

Dufour-Kowalski S, Courbaud B, Dreyfus P, Meredieu C, de Coligny F. 2012. Capsis: an open software framework and community for forest growth modelling. Annals of Forest Science (2012) 69, 221–233. Available in http://dx.doi. org/10.1007/s13595-011-0140-9.

FPFP. 2001a. Globulus v2.0 Modelo de produção para o Eucalipto. Manual do utilizador. Edição da Federação dos Produtores Florestais de Portugal. 35 pp.

FPFP. 2001b. Pbravo v2.0 Modelo de produção para o Pinheiro bravo. Manual do utilizador. Edição da Federação dos Produtores Florestais de Portugal. 47 pp.

FPFP. 2001c. SUBER v3.0 Modelo de produção para o Sobreiro. Manual do utilizador. Edição da Federação dos Produtores Florestais de Portugal. 43 pp.

Munro DD. 1974. Forest Growth Models - A Prognosis. In: Growth Models for Tree and Stand Simulation (Fries J, Ed.). Royal College of Forestry of Sweden, Research Note Number 30, 7 - 21.

Oliveira T. 2008. System for predicting total and components biomass in Eucalyptus globulus Labill. Stands, Masters thesis. Universidade Técnica de Lisboa, Instituto Superior de Agronomia, Lisboa, Portugal. Available in http://hdl.handle.net/10400.5/1056.

Paulo JA, Tomé M. 2010. Predicting mature cork biomass with t years of growth from one measurement taken at any other age. Forest Ecology and Management 259, 1993-2005. Available in http://dx.doi.org/10.1016/j.foreco.2010.02.010. http://dx.doi.org/10.1016/j.foreco.2010.02.010

Paulo JA, Tomé J, Tomé M. 2011. Nonlinear fixed and random generalized height-diameter models for Portuguese cork oak stands. Annals of Forest Science 68, 295 – 309. Available in http://dx.doi.org/10.1007/s13595-011-0041-y. http://dx.doi.org/10.1007/s13595-011-0041-y

Paulo JA. 2011. Desenvolvimento de um sistema para apoio à gestão sustentável de montados de sobro. PhD thesis. Universidade Técnica de Lisboa, Instituto Superior de Agronomia, Lisboa, Portugal. Available in http://hdl.handle.net/10400.5/3850.

Soares PMM, Cardoso RM, Miranda PMA, Medeiros J, Belo-Pereira M, Espírito-Santo F. 2012. WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Climate Dynamics. Available in http://dx.doi. org/10.1007/s00382-012-1315-2.

Tomé M, Coelho M, Soares P. 2010. KP-LULUCF. In: Portuguese National Inventory Report on Greenhouse Gases, 1990-2008 – Submitted under the UNFCC and the Kyoto Protocol. (Pereira TC, Seabra T, Maciel H, Torres P, eds). Portuguese Environmental Agency. Amadora, Portugal. pp. 10-27. Available in http://www.apambiente.pt/ [12Jan, 2012].

Wikström P, Edenius L, Elfving B, Eriksson LO, Lämås T, Sonesson J, et al. 2011. The Heureka Forestry Decision Support System: An Overview. Mathematical and Computational Forestry & Natural-Resource Sciences 3(2), 87-94.




DOI: 10.5424/fs/2012213-02951

Webpage: www.inia.es/Forestsystems