Distance-independent individual tree diameter-increment model for Thuya [Tetraclinis articulata (VAHL.) MAST.] stands in Tunisia

T. Sghaier, M. Tome, J. Tome, M. Sanchez-Gonzalez, I. Cañellas, R. Calama

Abstract


Aim of study: The aim of the work was to develop an individual tree diameter-increment model for Thuya (Tetraclinis articulata) in Tunisia.

Area of study: The natural Tetraclinis articulata stands at Jbel Lattrech in north-eastern of Tunisia.

Material and methods:  Data came from 200 trees located in 50 sample plots. The diameter at age t and the diameter increment for the last five years obtained from cores taken at breast height were measured for each tree. Four difference equations derived from the base functions of Richards, Lundqvist, Hossfeld IV and Weibull were tested using the age-independent formulations of the growth functions. Both numerical and graphical analyses were used to evaluate the performance of the candidate models.

Main results: Based on the analysis, the age-independent difference equation derived from the base function Richards model was selected. Two of the three parameters (growth rate and shape parameter) of the retained model were related to site quality, represented by a Growth Index, stand density and the basal area in larger trees divided by diameter of the subject tree expressing the inter-tree competition.

Research highlights: The proposed model can be useful for predicting the diameter growth of Tetraclinis articulata in Tunisia when age is not available or for trees growing in uneven-aged stands.

Keywords: Age-independent growth model; difference equations; Tetraclinis articulata; Tunisia.


Full Text:

PDF

References


Ben Mansoura A, Garchi S, 2001. Caractérisation de la croissance et de la régénération du Thuya par une technique modifiée de mesure de distances. Les annales de l'INRGREF, numéro spécial 2001: 54-76.

Blondel J, Aronson J, 1999. Biology and wildlife of the Mediterranean region. Oxford University Press, New York, USA.

Burnham KP, Anderson DR, 2002. Model selection and multimodel inference: a practical information-theoretic approach, 2nd ed. Springer, New York, USA.

Calama R, Sánchez-González MO, Garchi S, Ammari Y, Cañellas I, Sghaier T, 2012. Modeling tree level attributes for Thuya [Tetraclinis articulata Vahl. (Mast.)] forests in Tunisia. Forest system 21(2): 210-217.

Cieszewski CJ, 2000. Analytical site index solution for the generalized log-logistic height equation. For Sci 46:2 91-296.

Dagnelie P, 1998. Statistique théorique et appliquée. Tome 2: Inférence statistique à une et à deux dimensions. Bruxelles, De Boeck. 660 pp.

DGF, 1995. Résultats du premier inventaire forestier national en Tunisie. Direction Générale des Forêts. 88 pp.

Diéguez-Aranda U, Grandas-Arias, JA, Álvaraz-González JG, Gadow Kv, 2006. Site quality curves for birch stands in north-western Spain. Silva Fennica 40: 631-644.

Fabian CCU, William WO, 2008. Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model. For Ecol Manag 256: 438-445.

Farjon A, 2005. Monograph of Cupressaceae and Sciadopitys. Royal Botanic Gardens, Kew. PMCid:PMC1569457

Gea-Izquierdo G, Cañellas I, Montero G, 2008. Site index in agroforestry systems: age-independent and age-independent dynamic diameter growth models for Quercus ilex in Iberian open oak woodlands. Can For Res 38: 101-113. http://dx.doi.org/10.1139/X07-142

Huang S, Yang Y, Wang Y, 2003. A critical look at procedures for validating growth and yield models. In: Modelling forest systems (Amaro A, Reed D, Soares P, eds). CAB International, Wallingford, Oxfordshire, UK. pp: 271-293.

Kiviste A, Álvarez-González, JG, Rojo-Alboreca A, Ruiz- González AD, 2002. Funciones de crecimiento de aplicación en el ámbito forestal. Instituto nacional de investigación y tecnologia agraria y alimentaria, Madrid, Spain.

Korf V, 1939. A mathematical definition of stand volume growth law [in Czech: Pr˘íspûvek k matematické definici vzru° stového zákona lesních porostu° ]. Lesnická práce 18: 339-379.

Lundqvist B, 1957. On the height growth in cultivated stands of pine and spruce in Northern Sweden [In Swedish: Om Höjdutveck-lingrn i kulturbestand av tall och gran i Norrland]. Medd. Skogsforskn Inst 47: 64.

Reineke LH, 1933. Perfecting a stand-density index for evenaged forests. J Agric Res 46: 627-638.

Rejeb MN, Khaldi A, Khouja ML, Garchi S, Ben Mansoura A, Nouri M, 1996. Guide pour le choix des espèces de reboisement: espèces forestières et pastorales. INGREF. 137 pp. PMid:8763639

Richards FJ, 1959. A flexible growth function for empirical use. J Exp Bot 10: 290-300. http://dx.doi.org/10.1093/jxb/10.2.290

Rushforth K, 1999. Trees of Britain and Europe. Collins.

Rinntech, 2003. TSAP-WIN. Times series analysis and presentation for dendrochronology and related applications. Version 0.53. RINNTECH®, Heidelberg, Germany.

SAS Institute Inc, 2004. SAS/ETS® 9.1 User's Guide. Cary, NC, SAS Institute Inc.

Sghaier T, Calama R, Sánchez-González M, Garchi S, Ammari Y, Cañellas I (in prep). Site index and dynamic stand level model for the sustainable management of Thuya (Tetraclinis articulata) stands in north-east of Tunisia.

Sghaier T, Cañellas I, Calama R, Sánchez-González M (in review). Modelling diameter distribution of Tetraclinis articulata stands in north-eastern of Tunisia.

Stevens D, 2000. The Maltese national tree – the araar tree.

Tomé J, Tomé M, Barreiro S, Amaral Paulo J, 2006. Ageindependent difference equations for modelling tree and stand growth. Can J For Res 36: 1621-1630. http://dx.doi.org/10.1139/x06-065

Trasobares A, Pukkala T, 2004. Using past growth to improve individual-tree diameter growth models for uneven-aged mixtures of Pinus sylvestris L. and Pinus nigra Arn. in Catalonia, north-east Spain. Ann Sci For 61(5): 409-417. http://dx.doi.org/10.1051/forest:2004034

Trasobares A, Tomé M, Miina J, 2004. Growth and yield model for Pinus halepensis Mill. in Catalonia, north-east Spain. For Ecol Manag 203: 49-62.

Zeide B, 1993. Analysis of growth equations. For Sci 39: 594-616.




DOI: 10.5424/fs/2013223-03511

Webpage: www.inia.es/Forestsystems