A quantitative and molecular examination of Tuber melanosporum mycorrhizae in Quercus ilex seedlings from different suppliers in Spain

P. Alvarado, J.L. Manjon

Abstract


Aim of study: The aim of the work was to determine the degree of mycorrhization of Quercus ilex L. subsp. ballota (Desf.) Samp. by the black truffle fungus T. melanosporum Vittad. by quantitative and molecular analyses.

Area of study: seedlings inoculated by different Spanish suppliers.

Material and methods: The internal transcribed spacers (ITS) of mycorrhizae from different plants were amplified by nested PCR involving fluorescently-labelled primers, and the amplicons either directly sized by ARISA or analysed by TRFLP following their digestion with restriction endonucleases. TRFLP analysis distinguished between mycorrhizae of T. melanosporum, T. indicum Cooke & Massee and T. borchii Vittad., as suggested possible by virtual (in silico) TRFLP analysis and real TRFLP analysis of the ascomata of these species.

Main results: Significant differences between suppliers were detected in terms of the mean number of mycorrhizae established per plant and percentage mycorrhization. These results allowed the following quality standards for 2 year-old plants to be proposed: a) good quality: >3000 mycorrhizae/plant, >40% mycorrhization, b) medium (acceptable): >3000 mycorrhizae/plant, >30% mycorrhization, c) low quality: <3000 mycorrhizae/plant or <30% mycorrhization, always supposing the mycorrhizae counted represent the species of interest as confirmed by the presence of its DNA and the absence of DNA belonging to contaminating species. Finally, a new microsatellite allelic map obtained from the analysis of several T. melanosporum populations across Spain was used to provide a tool capable of determining the geographic origin of the fungi used to inoculate plants.

Research highlights: The proposed quality standards can be useful for the evaluation and certification of commercialized Q. ilex plants mycorrhized with T. melanosporum.

Keywords: mycorrhiza; certification; truffle; TRFLP; fungi.


Full Text:

PDF

References


Abourouh M. 1994. Les évaluations quantitatives des mycorhizes en pépinière et sur le terrain. Cah Opt Mediterraneennes 20: 51-61.

Alvarado P, Manjón JL. 2009. Selection of enzymes for terminal restriction fragment length polymorphism analysis of fungal internally transcribed spacer sequences. Appl Environ Microbiol 75(14): 4747-4752. http://dx.doi.org/10.1128/AEM.00568-09 PMid:19465521 PMCid:PMC2708443

Alvarado P, Moreno G, Manjón JL. 2012. Comparison between Tuber gennadii and T. oligospermum lineages reveals the existence of the new species T. cistophilum (Tuberaceae, Pezizales). Mycologia 104(4): 894-910. http://dx.doi.org/10.3852/11-254 PMid:22314593

Bach I, Bordács S, Szlávik S. 2010. Development of an official method to control the quality of mycorrhized forestry material in Hungary. Ost Zeitschr f Pilzk 19: 227-229.

Bencivenga M, Ferrara AM, Fontana A, Granetti B, Gregori G, Lo Bue G, et al. 1987. Valutazione dello stato di micorrizazione di piante tartufigene. Proposta di un metodo. Ministero dell’Agricultura e Foreste, Roma, Italia.

Bertault G, Rousset F, Fernandez D, Berthomieu A, Hochberg ME, Callot G, et al. 2001. Population genetics and dynamics of the black truffle in a man-made truffle field. Heredity 86: 451-458. http://dx.doi.org/10.1046/j.1365-2540.2001.00855.x PMid:11520345

Bonito G, Trappe JM, Donovan S, Vilgalys R. 2011. The Asian black truffle Tuber indicum can form ectomycorrhizas with North American host plants and complete its life cycle in non-native soils. Fung Ecol 4(1): 83-93. http://dx.doi.org/10.1016/j.funeco.2010.08.003

Bonuso E, Zambonelli A, Bergemann SE, Iotti M, Garbelotto M. 2010. Multilocus phylogenetic and coalescent analyses identify two cryptic species in the Italian bianchetto truffle, Tuber borchii Vittad. Conserv Genet 11: 1453-1466. http://dx.doi.org/10.1007/s10592-009-9972-3

Burke DJ, Martin KJ, Rygiewicz PT, Topa MA. 2005. Ectomycorrhizal fungi identification in single and pooled root samples: terminal restriction fragment length polymorphism (TRFLP) and morphotyping compared. Soil Biol & Biochem 37: 1683-1694. http://dx.doi.org/10.1016/j.soilbio.2005.01.028

Chen J, Guo S-X, Liu P-G. 2011. Species recognition and cryptic species in the Tuber indicum complex. PLoS ONE 6(1): e14625. http://dx.doi.org/10.1371/journal.pone.0014625 PMid:21297969 PMCid:PMC3030557

Dickie IA, FitzJohn RG. 2007. Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17: 259-270. http://dx.doi.org/10.1007/s00572-007-0129-2 PMid:17429700

Fischer C, Colinas C. 1996. Methodology for certification of Quercus ilex seedlings inoculated with Tuber melanosporum for commercial application. 1st International Conference on Mycorrhizae. Berkeley, California, USA, August, 1996.

FitzJohn RG, Dickie IA. 2007. TRAMPR: an R package for analysis and matching of terminal-restriction fragment length polymorphism (TRFLP) profiles. Mol Ecol Notes 7: 583-587. http://dx.doi.org/10.1111/j.1471-8286.2007.01744.x

Garbaye J, Wilhelm ME. 1984. Influence de la mycorhization acquise en pépinière sur la mycorhization de jeunes plantations de chêne. Acta Oecol 5: 151-161.

Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2: 113-118. http://dx.doi.org/10.1111/j.1365-294X.1993.tb00005.x PMid:8180733

Giomaro G, Zambonelli A, Sisti D, Cecchini M, Evangelista V, Stocchi V. 2000. Anatomical and morphological characterization of mycorrhizas of five strains of Tuber borchii Vittad. Mycorrhiza 10: 107-114. http://dx.doi.org/10.1007/s005720000065

Halász K, Bratek Z, Szegő D, Rudnóy S, Rácz I, Lásztity D, et al. 2005. Tests of species concepts of the small, white, European group of Tuber spp. based on morphology and rDNA ITS sequences with special reference to Tuber rapaeodorum. Mycol Prog 4: 281-290. http://dx.doi.org/10.1007/s11557-006-0132-6

Kovács GM, Jakucs E. 2006. Morphological and molecular comparison of white truffle ectomycorrhizae. Mycorrhiza 16: 567-574. http://dx.doi.org/10.1007/s00572-006-0071-8 PMid:16983567

Lindner DL, Banik MT. 2009. Effects of cloning and root-tip size on observations of fungal ITS sequences from Picea glauca roots. Mycologia 101: 157-165. http://dx.doi.org/10.3852/08-034 PMid:19271678

Manjón JL, García-Montero LG, Alvarado P, Moreno G, Di Massimo G. 2009. Tuber pseudoexcavatum versus T. pseudohimalayense — new data on the molecular taxonomy and mycorrhizae of Chinese truffles. Mycotaxon 110: 399-412. http://dx.doi.org/10.5248/110.399

Manter DK, Vivanco JM. 2007. Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis. J Microbiol Meth 71: 7-14. http://dx.doi.org/10.1016/j.mimet.2007.06.016 PMid:17683818

Martin KJ, Rygiewicz P. 2005. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5: 28. http://dx.doi.org/10.1186/1471-2180-5-28 PMid:15904497 PMCid:PMC1156903

Miko M, Gažo J. 2007. Methodical assessment of host tree seedlings inoculated with Tuber aestivum Vitt. for application in agroforestry. Acta Fytotech Zootech 1, 12-16.

Murat C, Díez J, Luis P, Delaruelle C, Dupré C, Chevalier G, et al. 2004. Polymorphism at the ribosomal DNA ITS and its relation to postglacial re-colonization routes of the Perigord truffle Tuber melanosporum. New Phytol 164: 401-411. http://dx.doi.org/10.1111/j.1469-8137.2004.01189.x

Murat C, Zampieri E, Vizzini A, Bonfante P. 2008. Is the Perigord black truffle threatened by an invasive species? We dreaded it and it has happened!. New Phytol 178: 699-702. http://dx.doi.org/10.1111/j.1469-8137.2008.02449.x PMid:18393950

Pruett GE, Bruhn JN, Mihail JD. 2009. Greenhouse production of Burgundy truffle mycorrhizae on oak roots. New Forests 37: 43-52. http://dx.doi.org/10.1007/s11056-008-9108-5

Riccioni C, Belfiori B, Rubini A, Passeri V, Arcioni S, Paolocci F. 2008. Tuber melanosporum outcrosses: analysis of the genetic diversity within and among its natural populations under this new scenario. New Phytol 180: 466-478. http://dx.doi.org/10.1111/j.1469-8137.2008.02560.x PMid:18643942

Rinaldi AC, Comandini O, Kuyper TW. 2008. Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33: 1-45.

Suz LM, Azul AM, Morris MH, Bledsoe CS, Martín MP. 2008a. Molecular and morphotyping methods to characterize ectomycorrhizal roots and hyphae in soil. In: Nautiyal CS, Dion P. (eds) Mycorrhizal Manual. Springer-Verlag, pp: 437-474.

Suz LM, Martín MP, Oliach D, Fischer C, Colinas C. 2008b. Mycelial abundance and other factors related to truffle productivity in Tuber melanosporum- Quercus ilex orchards. FEMS Microbiol Lett 285: 72-78. http://dx.doi.org/10.1111/j.1574-6968.2008.01213.x PMid:18510558

Vosátka M. 2009. Basic aspects of mycorrhizal biotechnology: fungal inocula production and application. In: Chauhan AK, Varma A, A textbook of molecular biotechnology. IK International, New Delhi, India.

White TJ, Bruns T, Lee S, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ. (eds) PCR Protocols: A Guide to Methods and Applications. Academic Press Inc., New York, pp: 315-322. PMid:1696192

Zambonelli A, Piattoni F, Iotti M. 2010. What makes a good truffle infected tree? Ost Zeitschr f Pilzk 19: 201-207.




DOI: 10.5424/fs/2013222-03559

Webpage: www.inia.es/Forestsystems