Physico-mechanical properties of Spanish juniper wood considering the effect of heartwood formation and the presence of defects and imperfections

Javier de la Fuente-Leon, Edgar Lafuente-Jimenez, Daphne Hermosilla, Miguel Broto-Cartagena, Antonio Gasco

Abstract


Aim of study: Determining the main physical and mechanical properties of Spanish juniper wood from Soria (Spain) considering the effects of heartwood formation and the presence of defects and imperfections; and comparing the resulting characteristics with similar existing data for other regional softwood species of commercial interest.
Area of study: Berlanga de Duero (Soria, Castilla y León), Spain.
Material and Methods: Wood physico-mechanical performance was determined by Spanish UNE standards in order to provide proper comparisons to other regional softwood species. An individual tree representing average plot characteristics was selected in all eight 10 m radius circular plots that were established well-representing the heterogeneity of this woodland. The age of every tree was determined reading the number of growth rings at the base of each sampled tree. Every physico-mechanical property was assessed at least 4 times for every wood sample type (sapwood and heartwood, whether clear or with the presence of defects) of each tree. Two-way ANOVA was run to assess significant differences in the results. Post hoc all pairwise comparisons were performed using Tukey's test (p < 0.05).
Research highlights: Spanish juniper wood resulted harder than other regional commercial conifers, and showed semi-heavyweight heartwood and lightweight sapwood; whereas shrinkage figures remarked its great dimensional stability. The high presence of knots within heartwood made it even heavier, harder, and more resistant to compression parallel to grain. A commercial use of this rare precious wood may contribute to juniper forests preservation in the frame of forest sustainable management plans.
Key words: heartwood effect; Juniperus thurifera L.; physico-mechanical wood properties; wood classification; wood defects.


Full Text:

PDF

References


AENOR (formerly IRANOR), Spanish Association for Standardisation and Certification, 1977a. UNE 56-529. Características físico mecánicas de la madera. Determinación del contenido de humedad por desecación hasta el estado anhidro. Madrid, Spain.

AENOR (formerly IRANOR), Spanish Association for Standardisation and Certification, 1977b. UNE 56-531. Características físico mecánicas de la madera. Determinación del peso específico. Madrid, Spain.

AENOR (formerly IRANOR), Spanish Association for Standardisation and Certification, 1977c. UNE 56-532. Características físico mecánicas de la madera. Determinación de la dureza. Madrid, Spain.

AENOR (formerly IRANOR), Spanish Association for Standardisation and Certification, 1977d. UNE 56-533. Características físico mecánicas de la madera. Determinación de las contracciones lineal y volumétrica. Madrid, Spain.

AENOR (formerly IRANOR), Spanish Association for Standardisation and Certification, 1977e. UNE 56-535. Características físico mecánicas de la madera. Determinación de la resistencia a la compresión axial. Madrid, Spain.

AENOR (formerly IRANOR), Spanish Association for Standardisation and Certification, 1978a. UNE 56-528. Características físico mecánicas de la madera. Preparación de probetas para ensayos. Madrid, Spain.

AENOR (formerly IRANOR), Spanish Association for Standardisation and Certification, 1978b. UNE 56-540. Características físico mecánicas de la madera. Interpretación de los resultados de los ensayos. Madrid, Spain.

AENOR (formerly IRANOR), Spanish Association for Standardisation and Certification, 1979. UNE 56-537. Características físico mecánicas de la madera. Determinación de la resistencia a la flexión estática. Madrid, Spain.

AENOR, Spanish Association for Standardisation and Certification, 1988. UNE 56-542. Características físico mecánicas de la madera. Determinación de la resistencia a la compresión perpendicular a las fibras. Madrid, Spain.

ASTM international, 1999. Standard practice for sampling forest trees for determination of clear wood properties. D 5536-94 (Reapproved 1999). West Conshohocken, Pennsylvania, USA.

ASTM international, 2000. Standard test methods for small clear specimens of timber. D 143-94 (Reapproved 2000). West Conshohocken, Pennsylvania, USA. ASTM international, 2002. Standard test methods for specific gravity of wood and wood-based materials. D 2395-02. West Conshohocken, Pennsylvania, USA.

Bamber RK, 1976. Heartwood, its function and formation. Wood Sci Technol 10: 1-8. http://dx.doi.org/10.1007/BF00376379

Bengtsson C, 2000. Stiffness of spruce wood - Influence of moisture conditions. Eu J Wood Wood Prod 58: 344-352. http://dx.doi.org/10.1007/s001070050443

Bertaudière V, Montès N, Gauquelin T, Edouard JX, 1999. Dendroecology of thuriferous juniper (Juniperus thurifera L.): example from a French Pyrenean site at Rie Mountain (Pyrenees, France). Ann For Sci 56: 685-697. http://dx.doi.org/10.1051/forest:19990806

Bertaudière V, Montès N, Badri W, Gauquelin T, 2001. Multicaulis structure of Juniperus thurifera: adaptation to a severe environment? C.r. de l'Acad. Des Sci Ser III - Sci de la Vie - Life Sci 324: 627-634.

Bosshard HH, 1967. On the formation of facultatively colored heartwood in Beilschmiedia tawa. Wood Sci Technol 2: 1-12. http://dx.doi.org/10.1007/BF00366408

Bruchert F, Becker G, Speck T, 2000. The mechanics of Norway spruce (Picea abies (L.) Karst): mechanical properties of standing trees from different thinning regimes. For Ecol Manag 135: 45-62.

CESEFOR, Centro de Servicios y Promoción Forestal y de su Industria de Castilla y León, 2006. Proponen crear la red Juniperus. AI.T.I.M. 241: 39.

Cigalat E, Soler M, 2003. Guía de las principales maderas y de su secado. Mundi-Prensa, Madrid, Spain.

Del Rio S, Peñas A. 2006. Potential areas of evergreen forests in "Castilla y León" (Spain) according to future climate change. Phytocoenol 36: 45-66. http://dx.doi.org/10.1127/0340-269X/2006/0036-0045

De Soto L, Olano JM, Rozas V, de la Cruz M, 2010. Release of Juniperus thurifera woodlands from herbivoremediated arrested succession in Spain. App Veg Sci 13: 15-25. http://dx.doi.org/10.1111/j.1654-109X.2009.01045.x

Evans JW, Senfit JF, Green DW, 2000. Juvenile wood effect in red alder: Analysis of physico-mechanical data to delineate juvenile and mature wood zones. For Prod J 50: 75-87.

Garcia L, Guindeo A, Peraza F, 1997. Especies de maderas para carpintería, construcción y mobiliario. Asociación de Investigación Técnica de las Industrias de la Madera (A.I.T.I.M.), Madrid, Spain.

Gauquelin T, Bertaudière V, Montès N, Badri W, Asmode J, 1999. Endangered stands of thuriferous juniper in the western Mediterranean basin: ecological status, conservation and management. Biodivers Conserv 8: 1479-1498. http://dx.doi.org/10.1023/A:1008966808796

Jiménez MN, Navarro FB, Ripoll MA, Bocio I, de Simón E, 2005. Effect of shelter tubes on establishment and growth of Juniperus thurifera L. (Cupressaceae) seedlings in Mediterranean semi-arid environment. Ann For Sci 62: 717-725. http://dx.doi.org/10.1051/forest:2005062

Llorente, R, 2001. Mejora de la producción artif icial de Juniperus thurifera L.: variación anual de la calidad de la semilla y primera elección de óptimos productores de estaquilla en la provincia de Soria. Proyecto fin de carrera (M.Sc. dissertation). Escuela Universitaria de Ingeniería Agraria, Universidad de Valladolid, Soria, Spain.

Lucas JA, 1998. Gestión, aprovechamiento y desarrollo sostenible en masas de enebro, jabino o sabina albar (Juniperus thurifera L.) en Soria. Montes 52: 121-130.

Lundstrom T, Heiz U, Stoffel M, Stockli V, 2007. Fresh-wood bending: linking the mechanical and growth properties of Norway spruce. Tree Physiol 27: 1229-1241. http://dx.doi.org/10.1093/treephys/27.9.1229

MARM, Ministerio de Medio Ambiente y Medio Rural y Marino, 2008. Anuario de Estadística. Subdirección General de Estadística, MARM, Madrid, Spain.

MARM, Ministerio de Medio Ambiente y Medio Rural y Marino, 2009. Dirección General de Medio Natural y Política Forestal. Tercer Inventario Forestal Nacional: 1997-2007. MARM, Madrid, Spain.

Montès N, Bertaudière V, Badri W, Zaoui EH, Gauquelin T, 2002. Biomass and nutrient content of a semi-arid mountain ecosystem: the Juniperus thurifera L. woodland of Azzaden Valley (Morocco). For Ecol Manag 166: 35-43.

Niklas KJ, 1997. Size- and age-dependent variation in the properties of sap- and heartwood in black locust (Robinia pseudoacacia L). Ann Bot 79: 473-478.

Oh JK, Shim K, Kim KM, Lee JJ, 2009. Quantification of knots in dimension lumber using a single-pass X-ray radiation. J Wood Sci 4: 264-272. http://dx.doi.org/10.1007/s10086-009-1031-7

Olano JM, Rozas V, Bartolomé D, Sanz D, 2008. Effects of changes in traditional management on height and radial growth patterns in a Juniperus thurifera L. woodland. For Ecol Manag 255: 506-512.

Palacios P, García-Esteban L, Guindeo A, Fernández FG, Fernández-Canteli A, Navarro N, 2008. Variation of impact bending in the wood of Pinus sylvestris L. in relation to its position in the tree. For Prod J 58: 55-60.

Panshin AJ, De Zeeuw C, 1970. Textbook of Wood Technology. Vol.1. Structure, identification, uses and properties of the commercial woods of the United States and Canada. McGraw-Hill, New York, USA.

Peraza C, 1964. Estudio de las maderas de coníferas espa-olas y de la zona Norte de Marruecos. Monografía nº 83. Instituto Forestal de Investigaciones y Experiencias (IFIE), Ministerio de Agricultura. Madrid, Spain.

Pueyo Y, Alados CL, 2007. Effects of fragmentation, abiotic factors and land use on vegetation recovery in a semi-arid Mediterranean area. Basic Appl Ecol 8: 158-170. http://dx.doi.org/10.1016/j.baae.2006.03.009

Riesco G., Díaz J, 2007. Características físicas de la madera de pino procedente de raleos en el noroeste de Espa-a. Maderas - Cienc Tecnol 8: 233-244.

Rozas V, Olano JM, de Soto L, Bartolomé D, 2008. Largescale structural variation and long-term growth dynamics of Juniperus thurifera trees in a managed woodland in Soria, central Spain. Ann For Sci 65: 809. http://dx.doi.org/10.1051/forest:2008066

Shan-Qing, L.; Feng, F, 2007. Comparative study on three dynamic modulus of elasticity and static modulus of elasticity for Lodgepole pine lumber. J For Res 18: 309-312. http://dx.doi.org/10.1007/s11676-007-0062-4

Zhou H, Smith I, 1991. Factors influencing bending properties of white spruce lumber. J Wood Fiber Sci 23: 483-500.

Wang SY, Lin SH, 1996. Effect of plantation spacing on the quality of visually graded lumber & mechanical properties of Taiwan-grown Japanese cedar. Mokuzai Gakkaishi 42: 435-444.




DOI: 10.5424/fs/2014231-03671

Webpage: www.inia.es/Forestsystems