White poplar (Populus alba L.) - Litter impact on chemical and biochemical parameters related to nitrogen cycle in contaminated soils

  • Paula Madejon Institute of Natural Resources an Agrobiology of Seville (IRNAS), CSIC. Sevilla.
  • Lisa Ciadamidaro Institute of Natural Resources an Agrobiology of Seville (IRNAS), CSIC. Sevilla.
  • Francisco Cabrera Institute of Natural Resources an Agrobiology of Seville (IRNAS), CSIC. Sevilla.
  • Engracia Madejon Institute of Natural Resources an Agrobiology of Seville (IRNAS), CSIC. Sevilla.

Abstract

Aim of study: The aim of this study was to determine the effect of litter from Populus alba on chemical and biochemical properties related to the N cycle in soils with different pH values and trace element contents. We hypothesized that this litter would influence several parameters related to the N cycle and consequently to soil health.
Area of study: we collected two reforested contaminated soils of different pH values (AZ pH 7.23 and DO pH = 2.66) and a non-contaminated soil (RHU pH 7.19).
Materials and methods: Soil samples were placed in 2,000 cm3 microcosms and were incubated for 40 weeks in controlled conditions. Each soil was mixed with its corresponding litter, and soils without litter were also tested for comparison. Ammonium (NH4+-N) and nitrate (NO3–-N) content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN), protease activity, and several chemical properties such as pH, available trace element concentrations (extracted with 0.01 M CaCl2) were determined at different times of incubation.
Main results: Values of available trace elements did not vary during the incubation and were always higher in acid soil. In neutral soils litter presence increased values of Kjeldahl-N, NO3–-N content, potential nitrification rate (PNR), microbial biomass nitrogen (MBN) and protease activity. Presence of trace elements in neutral soils did not alter the parameters studied. However, acidic pH and high content of available trace elements strongly affected NH4+-N andNO3–-N, microbial biomass N and protease activity.
Research highlights: Our results showed the negative effect of the acidity and trace element availability in parameters related with the N-cycle.

Key words: microbial biomass N; protease activity; soil pH; N mineralization; nitrification; phytoremediation.

Downloads

Download data is not yet available.

References

Aciego Pietri JC, Brookes PC, 2008. Nitrogen mineralization along a pH gradient of a silty loam UK soil. Soil Biol Biochem 40:797-802 http://dx.doi.org/10.1016/j.soilbio.2007.10.014

Baath E, 1989. Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Pollut 47: 335-379 http://dx.doi.org/10.1007/BF00279331

Babich H, Stotzky G, 1980. Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. CRC Crit Rev Microbial 8: 99-145 http://dx.doi.org/10.3109/10408418009081123

Berg B, Matzner E, 1997. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ. Reviews 5: 1-25 http://dx.doi.org/10.1139/a96-017

Borken W, Davidson EA, Savage K, Gaudinski J, Trumbore SE, 2003. Drying and wetting effects on carbon dioxide release from organic horizons. Soil Sci Soc Am J 67: 1888-1896. http://dx.doi.org/10.2136/sssaj2003.1888

Brady NC, 1990. The nature and the properties of soils, 10th ed. MacMillan, Publishing Company, New York, USA.

Brallier S, Harrison RB, Henry CL, Dongsen X, 1996. Liming effects on availability of Cd, Cu, Ni and Zn in a soil amended with sewage sludge 16 years previously. Water Air Soil Pollut 86: 195-206. http://dx.doi.org/10.1007/BF00279156

Cabrera F, Clemente L, Díaz Barrientos E, López R, Murillo JM, 1999. Heavy metal pollution of soils affected by the Guadiamar toxic flood. Sci Total Environ 224: 117-129. http://dx.doi.org/10.1016/S0048-9697(99)00379-4

Cabrera F, Soldevilla M, Cordón R, Arambarri P, 1987. Heavy metal pollution in the Guadiamar river and the Guadalquivir estuary (South West Spain). Chemosphere 2/3: 463-468. http://dx.doi.org/10.1016/0045-6535(87)90254-2

Cabrera F, Martín-Olmedo P, López R, Murillo JM, 2005. Nitrogen mineralization in soils amended with composted olive mill sludge. Nutr Cycl Agroecosys 71: 249-258. http://dx.doi.org/10.1007/s10705-004-6373-3

Calfapietra C, Gielen B, Karnosky D, Ceulemans R, Scarascia Mugnozza G, 2010. Response and potential of agroforestry crops under global change. Environ Pollut 158: 1095-1104. http://dx.doi.org/10.1016/j.envpol.2009.09.008

Campbell CA, Lafond GP, Leyshon AJ, Zenter RP, Janzen HH, 1991. Effect of cropping practices on the initial potential rate of N mineralization in a thin Chernozem. Can J Soil Sci 71: 43-53. http://dx.doi.org/10.4141/cjss91-004

Ciadamidaro L, Madejón E, Puschenreiter M, Madejón P, 2013. Growth of Populus alba and its influence on soil trace element availability. Sci Total Environ 454-455: 337-347. http://dx.doi.org/10.1016/j.scitotenv.2013.03.032

Dancer WS, Peterson LA, Chesters G, 1973. Ammonification and nitrification of N as influenced by soil pH and previous N treatments. Soil Sci Soc Am J 37: 67-69. http://dx.doi.org/10.2136/sssaj1973.03615995003700010024x

Domínguez MT, Marañón T, Murillo JM, Schulin R, Robinson BH, 2008. Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152: 50-59. http://dx.doi.org/10.1016/j.envpol.2007.05.021

Domínguez MT, Madejón P, Marañón T, Murillo JM, 2010. Afforestation of a trace-element polluted area in SW Spain: woody plant performance and trace element accumulation. Eur J Forest Res 129: 47-59. http://dx.doi.org/10.1007/s10342-008-0253-3

Fierer N, Schimel JP, 2002. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34: 777-787. http://dx.doi.org/10.1016/S0038-0717(02)00007-X

Gil-Sotres F, Trasar-Cepeda C, Leirós MC, Seoane S, 2005. Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37: 877-887 http://dx.doi.org/10.1016/j.soilbio.2004.10.003

Gregorich EG, Wen G, Voroney RP, Kachanoski RG, 1990. Calibration of rapid direct chloroform extraction method for measuring soil microbial biomass C. Soil Biol Biochem 22: 1009-1011. http://dx.doi.org/10.1016/0038-0717(90)90148-S

Grimalt JO, Ferrer M, Macpherson E, 1999. The mine tailing accident in Aznalcollar. Sci Total Environ 242: 3-11. http://dx.doi.org/10.1016/S0048-9697(99)00372-1

Hassink J, 1994. Effects of soil texture and grassland management on soli organic C and N and rates of C and N mineralization. Soil Biol Biochem 26: 1221-1231. http://dx.doi.org/10.1016/0038-0717(94)90147-3

He ZL, Alva AK, Yan P, Li YC, Calvert, DV, Stoffella PJ, Banks DJ, 2000. Nitrogen mineralization and transformation from composts and biosolids during field incubation in a sandy soil. Soil Sci 165: 161-169. http://dx.doi.org/10.1097/00010694-200002000-00007

Heal OW, Anderson JM, Swift MJ, 1997. Plant litter quality and decomposition: An historical overview. In: Plant litter quality and decomposition driven by nature (Cadish G, Giller KE, eds). CAB International, Wallingford, UK. pp: 3-30.

Hernández T, Moral R, Perez-Espinosa A, Moreno-Caselles J, Perez-Murcia MD, García C, 2002. Nitrogen mineralisation potential in calcareous soils amended with sewage sludge. Bioresour Technol 83: 213-219. http://dx.doi.org/10.1016/S0960-8524(01)00224-3

Hesse PR, 1971. A textbook of soil chemical analysis. John Murray, London, UK.

Houba VJ, Lexmond ThM, Novozamsky I, Van der Lee JJ, 1996. The state of the art and future developments in soil analysis for bioavailability assessment. Sci Total Environ 178: 21-28. http://dx.doi.org/10.1016/0048-9697(95)04793-X

Hoffmann H, Schloter M and Wilke B-M, 2007. Microscalescale measurement of potential nitrification rates of soil aggregates. Biol Fertil Soils 44: 411-413. http://dx.doi.org/10.1007/s00374-007-0227-5

Islam A, White RE, Chen D, 2006. Nitrification activity in acid soils of north-eastern Victoria, Australia, as affected by liming and phosphorus fertilisation. Aust J Soil Res 44: 739-744. http://dx.doi.org/10.1071/SR06058

Kabata-Pendias A, 2004. Soil-plant transfer of heavy metals – An environmental issue. Geoderma 122: 143-149. http://dx.doi.org/10.1016/j.geoderma.2004.01.004

Kandeler E, 1996. Nitrification during long term incubation. In: Methods in soil biology (Schinner F, Kandeler E, Ohlinger R, Margesin R (eds). Springer, Berlin, Heidelberg, New York, USA. pp: 149-151.

Keeney DR, Nelson DW, 1982. Nitrogen – Inorganic forms. In: Methods of soil analysis. Part 2 Chemical and Microbiological properties, 2nd ed (Page AL. ed). Agronomy No. 9, American Society of Agronomy, Inc Madison, Wisconsin, USA. pp: 699-779.

Kumar CG, Takagi H, 1999. Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol Adv 17: 561-594. http://dx.doi.org/10.1016/S0734-9750(99)00027-0

Ladd JN, Butler JHA, 1972. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol Biochem 4: 19-30. http://dx.doi.org/10.1016/0038-0717(72)90038-7

Leita L, De Nobili M, Muhlbachova G, Mondini C, Marchiol L, Zerbi G, 1995. Bioavailability and effects of heavy metal son soil microbiol biomass survival during laboratory incubation. Biol Fert Soils 19: 103-108. http://dx.doi.org/10.1007/BF00336144

Lucas-Borja MF, Wic-Baena C, Moreno JL, Dadi T, García C, Andrés-Abellán M, 2011. Microbial activity in soil under fast-growing Paulownia (Paulownia elongate ⋅ fortunei) plantations in Mediterranean areas. App Soil Ecol 51: 42-51. http://dx.doi.org/10.1016/j.apsoil.2011.08.011

Madrid F, López R, Cabrera F, Murillo JM, 2011. Nitrogen mineralization of immature municipal solid waste compost. J Plant Nutr 34: 324-336. http://dx.doi.org/10.1080/01904167.2011.536875

Mertens J, Vervaeke P, De Schrijver A, Luyssaert S, 2004. Metal uptake by young trees from dredged brackish sediment: limitations and possibilities fophytoextraction and phytostabilisation. Sci Total Environ 326: 209-215. http://dx.doi.org/10.1016/j.scitotenv.2003.12.010

Mertens J, Broos K, Wakelin SA, Kowalchuk GA, Sprinael D, Smolders E, 2009. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. ISME J 3: 916-923. http://dx.doi.org/10.1038/ismej.2009.39

Moorhead DL, Currie WS, Rastetter EB, Parton WJ, Harmon ME, 1999. Climate and litter quality controls on decomposition. An analysis of modelling approaches. Global Biogeochem Cy 13: 375-589. http://dx.doi.org/10.1029/1998GB900014

Nannipieri P, Eldor P, 2009. The chemical and functional characterization of soil N and its biotic components. Soil Biol Biochem 41: 2357-2369. http://dx.doi.org/10.1016/j.soilbio.2009.07.013

Papa S, Bartoli G, Pellegrino A, Fioretto A, 2010. Microbial activities and trace element contents in an urban soil. Environ Monit Assess 165:1 93-203.

Pérez de Mora A, Madejón E, Burgos P, Cabrera F, 2006. Trace element availability and plant growth in a mine spill contaminated soil under assisted natural remediation I. Soils. Sci Total Environ 363: 28-37. http://dx.doi.org/10.1016/j.scitotenv.2005.10.015

Premi PR, Cornfield AH, 1969. Effects of addition of copper, manganese, zinc and chromium compounds on ammonification and nitrification during incubation of soil. Plant Soil 31: 345-352. http://dx.doi.org/10.1007/BF01373578

Robertson GP, Groffman PM, 2007. Nitrogen transformations. In: Soil microbiology, ecology, and biochemistry (Paul EA, ed). Academic Press, Bulington, MA, USA. pp: 341-364. http://dx.doi.org/10.1016/B978-0-08-047514-1.50017-2

Robinson BH, Mis TM, Petit D, Fung LE, Green SR, Clothier BE, 2000. Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227: 301-306. http://dx.doi.org/10.1023/A:1026515007319

Sahrawat KL, 2008. Factors affecting nitrification in solis. Commun. Soil Sci Plant Anal 39: 1436-1446. http://dx.doi.org/10.1080/00103620802004235

Scheid S, Günthardt-Goerg MS, Schulin R, Nowack B, 2009. Accumulation and solubility of metals during leaf litter decomposition in non-polluted and polluted soil. Eur J Soil Sci 60: 613-621. http://dx.doi.org/10.1111/j.1365-2389.2009.01153.x

Simard R, N'Dayegamiye A, 1993. Nitrogen-mineralization potential of meadow soils. Can J Soil Sci 73: 27-38. http://dx.doi.org/10.4141/cjss93-003

Smolders E, Brans K, Coppens F, Merckx R, 2001. Potential nitrification rate as a tool for screening toxicity in metalcontaminated soils. Environ Toxicol Chem 20: 2469-2474. http://dx.doi.org/10.1002/etc.5620201111

Smolders E, Buekers J, Oliver I, McLaughlin MJ, 2004. Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils. Environ Toxicol Chem 23: 2633-2640. http://dx.doi.org/10.1897/04-27

Speir TW, Kettles HA, Parshotam A, Searle PL, Vlaar LNC, 1995. A simple kinetic approach to derive the ecological dose value, ED50, for the assessment of Cr(VI) toxicity to biological properties. Soil Biol Biochem 27: 801-810. http://dx.doi.org/10.1016/0038-0717(94)00231-O

Standford G, Smith SJ, 1972. Nitrogen mineralization potentials of soils. Soil Sci Soc Am Pro 36: 465-472. http://dx.doi.org/10.2136/sssaj1972.03615995003600030029x

Ste-Marie C, Paré D, 1999. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biol Biochem 31: 1579-1589. http://dx.doi.org/10.1016/S0038-0717(99)00086-3

Stevens RJ, Laughlin RJ, Malope JP, 1998. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol Biochem 30: 1119-1126. http://dx.doi.org/10.1016/S0038-0717(97)00227-7

Tappi Standard, 2004. T222 om-88. 2004-2005. Tappi Test Methods. Tappi Press, Atlanta, GA, USA.

Tyler G, 1981. Leaching of metals from the A-horizon of a spruce forest soil. Water Air Soil Pollut 15: 353-369. http://dx.doi.org/10.1007/BF00285049

Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG, 1997. Human alteration of the global Nitrogen cycle: sources and consequences. Ecol Appl 7: 737-750.

Walkley A, Black IA, 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed determination of the chromic acid titration method. Soil Sci 37: 29-38. http://dx.doi.org/10.1097/00010694-193401000-00003

Watson CE Jr, Watson VH, 1989 Comparison of white clover and ammonium nitrate as nitrogen sources for tall fescue. Fert Res 21: 109-111. http://dx.doi.org/10.1007/BF01080535

Wilke BM, 1989. Long-term effects of different inorganic pollutants on nitrogen transformations in a sandy cambisol. Biol Fertil Soils 7: 254-258. http://dx.doi.org/10.1007/BF00709657

Yang Y, Campbell CD, Clark L, Cameron CM, Paterson E, 2006. Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere 63: 1942- 1952. http://dx.doi.org/10.1016/j.chemosphere.2005.10.009

Zhang J, Zhu T, Cai Z, Müller C, 2011. Nitrogen cycling in forest soils across climate gradients in Eastern China. Plant Soil 342: 419-432. http://dx.doi.org/10.1007/s11104-010-0706-6

Published
2014-04-01
How to Cite
Madejon, P., Ciadamidaro, L., Cabrera, F., & Madejon, E. (2014). White poplar (Populus alba L.) - Litter impact on chemical and biochemical parameters related to nitrogen cycle in contaminated soils. Forest Systems, 23(1), 72-83. https://doi.org/10.5424/fs/2014231-04001
Section
Research Articles