Modeling dominant height growth including site attributes in the GADA approach for Quercus faginea Lam. in Spain

Eduardo Lopez-Senespleda, Andres Bravo-Oviedo, Rafael Alonso Ponce, Gregorio Montero Gonzalez

Abstract


Aim of the study: To develop a site index model for Quercus faginea Lam. stands.

Area of study: Spain

Material and Methods: Data from 81 growth series collected in plots where Q. faginea was the main species were used for modelling. Different generalized algebraic difference equations (GADA) were fitted from traditionally used models. Richards model was selected and used to expand the parameters with environmental variables.

Research highlights: Winter rainfall (WR), annual potential evapotranspiration (PET) and pH were introduced increasing the prediction ability of the GADA. It is strongly recommended to apply the model with ages lower than 80 years because the lack of data above that age makes bias increase and efficiency decrease.

Keywords: Site index; Lusitanian oak; environmental variables.


Full Text:

PDF

References


Adame P, Cañellas I, Roig S, Río M, 2006. Modelling dominant height growth and site index curves for rebollo oak (Quercus pyrenaica Willd.). Ann For Sci 63: 929-940. http://dx.doi.org/10.1051/forest:2006076

Akaike H, 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716-723. http://dx.doi.org/10.1109/TAC.1974.1100705

Alonso Ponce R, 2008. Autoecología paramétrica de Juniperus thurifera L. en Castilla y León Doctoral thesis. Universidad Politécnica, Madrid. (Spain).

Álvarez González JG, Barrio Anta M, Diéguez Aranda U, Rojo Alboreca A., 2004. Metodología para la construcción de curvas de calidad de estación. Cuad Soc Esp Cien For 18: 303-309.

Amaro A, Reed AD, Tomé M, 1998. Modeling dominant height growth: eucaliptus plantations in Portugal. Forest Sci 44: 37-46.

Bravo-Oviedo A, Gallardo-Andrés C, Río M, Montero G, 2010. Regional changes of Pinus pinaster site index in Spain using a climate-based dominant height model. Can J Forest Res 40: 2036-2048. http://dx.doi.org/10.1139/X10-143

Bravo-Oviedo A, Río M, Montero G, 2007. Geographic variation and parameter assessment in generalized algebraic difference site index modelling. Forest Ecol Manag 247: 107-119. http://dx.doi.org/10.1016/j.foreco.2007.04.034

Bravo-Oviedo A, Tomé M, Bravo F, Montero G, Río M, 2008. Dominant height growth equations including site attributes in the generalized algebraic difference approach. Can J Forest Res 38: 2348-2358. http://dx.doi.org/10.1139/X08-077

Calama R, Montero G, 2004. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain. Can J Forest Res 34, 150-163. http://dx.doi.org/10.1139/x03-199

Carmean WH, 1972. Site index curves for upland oaks in the central Status. Forest Sci 18: 109-120.

Cieszewski CJ, 2004. GADA derivation of dynamic site equations with polymorphism and variable asymptotes from Richards, Weibull and other exponential functions. PMRC Technical Report 2004.

Cieszewski CJ, Bailey RL, 2000. Generalized algebraic difference approach: Theory based derivation of dynamic site equations with polymorphism and variable asymptotes. Forest Sci 46: 116-126.

Cieszewski CJ, Harrison M, Martin SW, 2000. Practical methods for estimating non-biased parameters in self-referencing growth and yield models. PMRC Technical Report 2000. pp. 11.

Cieszewski CJ, Strub M, 2008. Generalized algebraic difference approach derivation of dynamic site equations with polymorphism and variable asymptotes from exponential and logarithmic functions. Forest Sci 54: 303-315.

Clutter JL, 1983. Timber management: a quantitative approach. J. Wiley, New York.

Costa M, Morla C, Sainz H (eds), 2005. Los bosques Ibéricos: Una interpretación geobotánica. Ed Planeta, Madrid (Spain).

Davidson AC, Hincley DV, 1997. Bootstrap methods and their application. Cambridge series in Statistical and Probabilistic Mathematics, Cambridge University Press, pp. 582. http://dx.doi.org/10.1017/CBO9780511802843

Diéguez Aranda U, Álvarez González JG, Barrio Anta M, Rojo Alboreca A, 2005. Site quality equations for Pinus sylvestris L. plantations in Galicia (northwestern Spain). Ann For Sci 62: 143-152. http://dx.doi.org/10.1051/forest:2005006

Gea-Izquierdo G, Cañellas I, Montero G, 2008. Site Index in agroforestry systems: Age-dependent and age-independent dynamic diameter growth models for Quercus ilex L. in Iberian open oak woodlands. Can J Forest Res 138: 101-113. http://dx.doi.org/10.1139/X07-142

Goelz JCG, Burk TE, 1992. Development of a well-behaved site index equation: jack pine in north central Ontario. Can J Forest Res 22, 776-784. http://dx.doi.org/10.1139/x92-106

Gregoire T, Schanbenberger O, Barrett JP, 1995. Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements. Can J Forest Res 25: 137-156. http://dx.doi.org/10.1139/x95-017

Kiviste A, Álvarez González JG, Rojo Alboreca A, Ruiz González D, 2002. Funciones de crecimiento de aplicación en el ámbito forestal. INIA, Madrid (Spain).

Krumland B, Eng H, 2005. Site index systems for mayor young-growth forest and woodland species in northern California. The Resources Agency Dpt Forestry & Fire Protection. pp. 219.

López-Senespleda E, Sánchez-Palomares O, 2007. Modelo de calidad de estación y crecimiento en altura dominante para Quercus faginea Lam. en España. Cuad Soc Esp Cien For 23: 199-205.

Ortega A, Montero G, 1988. Evaluación de la calidad de las estaciones forestales. Revisión bibliográfica. Ecología. 2: 155-184.

Richards FJ, 1959. A flexible growth function for empirical use. J Exp Bot 10: 290-300. http://dx.doi.org/10.1093/jxb/10.2.290

Rinn F, 2005. TSAPWin Professional. RINNTECH, Heidelberg (Germany).

San Miguel A, 1986. Ecología, tipología, valoración y alternativas silvopascícolas de los quejigares (Quercus faginea Lamk.) de Guadalajara. Doctoral thesis. Universidad Politécnica, Madrid. (Spain).

Sánchez-González M, Stiti B, Chaar H, Cañellas I, 2010. Dynamic dominant height growth model for Spanish and Tunisian cork oak (Quercus suber L.) forests. Forest Systems 19: 285-298. http://dx.doi.org/10.5424/fs/2010193-8495

Sánchez-González M, Tomé M, Montero G, 2005. Modelling height and diameter growth of dominant cork oak trees in Spain. Ann For Sci 62: 633-643. http://dx.doi.org/10.1051/forest:2005065

SAS I.I, 2004. SAS/STAT® 9.1 User's Guide, SAS Inst Inc, Cary, NC.

Serrada R, Montero G, Reque J (eds), 2008. Compendio de Selvicultura aplicada en España, Madrid (Spain).

Thornthwaite CW, 1948. An approach to a rational classification of climate. Geogr Rev 38: 55-94. http://dx.doi.org/10.2307/210739

Zimmerman DL, Núñez-Antón V, 2001. Parametric modelling of growth curve data: an overview. Test 10: 1-73. http://dx.doi.org/10.1007/BF02595823




DOI: 10.5424/fs/2014233-04937

Webpage: www.inia.es/Forestsystems