Point processes statistics of stable isotopes: analysing water uptake patterns in a mixed stand of Aleppo pine and Holm oak

Carles Comas, Jorge del Castillo, Jordi Voltas, Juan Pedro Ferrio


Aim of study: Understanding inter- and intra-specific competition for water is crucial in drought-prone environments. However, little is known about the spatial interdependencies for water uptake among individuals in mixed stands. The aim of this work was to compare water uptake patterns during a drought episode in two common Mediterranean tree species, Quercus ilex L. and Pinus halepensis Mill., using the isotope composition of xylem water (δ18O, δ2H) as hydrological marker.

Area of study: The study was performed in a mixed stand, sampling a total of 33 oaks and 78 pines (plot area= 888 m2). We tested the hypothesis that both species uptake water differentially along the soil profile, thus showing different levels of tree-to-tree interdependency, depending on whether neighbouring trees belong to one species or the other.

Material and Methods: We used pair-correlation functions to study intra-specific point-tree configurations and the bivariate pair correlation function to analyse the inter-specific spatial configuration. Moreover, the isotopic composition of xylem water was analysed as a mark point pattern.

Main results: Values for Q. ilex18O= -5.3 ±0.2‰, δ2H=-54.3±0.7‰) were significantly lower than for P. halepensis18O= -1.2±0.2‰, δ2H = -25.1±0.8‰), pointing to a greater contribution of deeper soil layers for water uptake by Q. ilex. Research highlights: Point-process analyses revealed spatial intra-specific dependencies among neighbouring pines, showing neither oak-oak nor oak-pine interactions. This supports niche segregation for water uptake between the two species.

Key words: Cross-pair correlation function; Deuterium; Mark correlation function; Oxygen-18; Point patterns; Xylem.

Abbreviations: d18O, oxygen isotope composition; d2H, hydrogen isotope composition; BA, basal area.

Full Text:




AEMET-IM, 2011. Iberian Climate Atlas. State Meteorological Agency of Spain and Institute of Meteorology of Portugal.

Armas C, Padilla FM, Pugnaire FI, Jackson RB, 2010. Hydraulic lift and tolerance to salinity of semiarid species: consequences for species interactions. Oecologia 162, 11-21. http://dx.doi.org/10.1007/s00442-009-1447-1

Baquedano FJ, Castillo FJ, 2006. Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees - Struct Funct V20, 689-700.

Baquedano FJ, Castillo FJ, 2007. Drought tolerance in the Mediterranean species Quercus coccifera, Quercus ilex, Pinus halepensis, and Juniperus phoenicea. Photosynthetica 45(2), 229-238. http://dx.doi.org/10.1007/s11099-007-0037-x

Bellot J, Maestre FT, Chirino E, Hernández N, de Urbina JO, 2004. Afforestation with Pinus halepensis reduces native shrub performance in a Mediterranean semiarid area. Acta Oecol 25, 7-15. http://dx.doi.org/10.1016/j.actao.2003.10.001

Borghetti M, Cinnirella S, Magnani F, Saracino A, 1998. Impact of long-term drought on xylem embolism and growth in Pinus halepensis Mill. Trees 12, 187-195.

Brooks JR, Meinzer FC, Warren JM, Domec JC, Coulombe R, 2006. Hydraulic redistribution in a Douglas-fir forest: lessons from system manipulations. Plant Cell Environ 29, 138-150. http://dx.doi.org/10.1111/j.1365-3040.2005.01409.x

Canadell J, Jackson RB, Ehleringer JB, Mooney HA, Sala OE, Schulze ED, 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583-595. http://dx.doi.org/10.1007/BF00329030

Comas C, 2009. Modelling forest regeneration strategies through the development of a spatio-temporal growth interaction model. Stoch Env Res Risk A 23, 1089-1102. http://dx.doi.org/10.1007/s00477-008-0282-y

Comas C, Mateu J, 2007. Modelling forest dynamics: a perspective from point process methods. Biometrical J 49, 176-196. http://dx.doi.org/10.1002/bimj.200510268

Damesin C, Rambal S, Joffre R, 1998. Co-occurrence of trees with different leaf habit: a functional approach on Mediterranean oaks. Acta Oecol 19, 195-204. http://dx.doi.org/10.1016/S1146-609X(98)80024-6

Dawson TE, Ehleringer JR, 1993. Isotopic Enrichment of Water in the Woody Tissues of Plants - Implications for Plant Water Source, Water-Uptake, and Other Studies Which Use the Stable Isotopic Composition of Cellulose. Geochim. Cosmochim. Acta 57, 3487-3492. http://dx.doi.org/10.1016/0016-7037(93)90554-A

Dawson TE, Ehleringer JR, Hall AE, Farquhar GD, 1993. Water sources of plants as determined from xylem-water isotopic composition: perspectives on plant competition, distribution, and water relations. In: Stable isotopes and plant carbon-water relations (Ehleringer JR, Hall AE, Farquhar GD, eds.). Academic Press,Inc., San Diego, USA. http://dx.doi.org/10.1016/B978-0-08-091801-3.50040-4

Dawson TE, Simonin KA, 2011. The roles of stable isotopes in forest hydrology and biogeochemistry. Ecol Studies 216, 137-161. http://dx.doi.org/10.1007/978-94-007-1363-5_7

Del Castillo J, Aguilera M, Voltas J, Ferrio JP, 2013. Isoscapes of tree-ring carbon-13 perform like meteorological networks in predicting regional precipitation patterns. J Geophysic Res: Biogeosciences 118, 352-360.

Diggle PJ, 2003. Statistical Analysis of Spatial Point Patterns. Arnold, Hodder.

Fernández ME, Gyenge JE, Licata J, Schlichter TM, Bond B, 2008. Belowground interaction between trees and grasses in a temperate semiarid agroforestry systems. Agroforest Syst 74, 185-197. http://dx.doi.org/10.1007/s10457-008-9119-4

Ferrio JP, Florit A, Vega A, Serrano L, Voltas J, 2003. Δ13C and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis. Oecologia 137, 512-518. http://dx.doi.org/10.1007/s00442-003-1372-7

Ferrio JP, Resco V, Williams DG, Serrano L, Voltas J, 2005. Stable isotopes in arid and semi-arid forest systems. Invest Agraria: Sist Recursos Forest 14, 371-382.

Filella I, Peñuelas J, 2003a. Indications of hydraulic lift by Pinus halepensis and its effects on the water relations of neighbour shrubs. Biol Plantarum 47, 209-214. http://dx.doi.org/10.1023/B:BIOP.0000022253.08474.fd

Filella I, Peñuelas J, 2003b. Partitioning of water and nitrogen in co-occurring Mediterranean woody shrub species of different evolutionary history. Oecologia 137, 51-61. http://dx.doi.org/10.1007/s00442-003-1333-1

Gracia M, Retana J, Dreyer E, Aussenac G, 1996. Effect of site quality and thinning management on the structure of holm oak forests in northeast Spain. Ann Sci-Forestieres 53, 571-584. http://dx.doi.org/10.1051/forest:19960236

Hentschel R, Bittner S, Janott M, Biernath C, Holst J, Ferrio JP et al., 2013. Simulation of stand transpiration based on a xylem water flow model for individual trees. Agric For Meteorol 182, 31-42. http://dx.doi.org/10.1016/j.agrformet.2013.08.002

Herrera CM, 1992. Historical effects and sorting processes as explanations for contemporary ecological patterns: Character syndromes in Mediterranean woody plants. Am Nat 140, 421-446. http://dx.doi.org/10.1086/285420

Illian J, Penttinen A, Stoyan H, and Stoyan D, 2008. Statistical analysis and modelling of spatial point patterns. Wiley-Interscience.

Infante JM, Damesin C, Rambal S, Fernandez-Ales R, 1999. Modelling leaf gas exchange in holm-oak trees in southern Spain. Agric For Meteorol 95, 203-223. http://dx.doi.org/10.1016/S0168-1923(99)00033-7

Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN, 2009. Ecological information from spatial patterns of plants: insights from point process theory. J Ecol 97, 616-628. http://dx.doi.org/10.1111/j.1365-2745.2009.01510.x

Klein T, Hemming D, Lin T, Grunzweig JM, Maseyk K, Rotenberg E et al., 2005. Association between tree-ring and needle delta13C and leaf gas exchange in Pinus halepensis under semi-arid conditions. Oecologia 144, 45-54. http://dx.doi.org/10.1007/s00442-005-0002-y

Klein T, Rotenberg E, Cohen-Hilaleh E, Raz-Yaseef N, Tatarinov F, Preisler Y, Ogée J, Cohen S, Yakir D, 2014. Quantifying transpirable soil water and its relations to tree water use dynamics in a water-limited pine forest. Ecohydrology 7(2), 409–419. http://dx.doi.org/10.1002/eco.1360

Klein T, Shpringer I, Fikler B, Elbaz G, Cohen S, Yakir D, 2013. Relationships between stomatal regulation, water-use, and water-use efficiency of two coexisting key Mediterranean tree species. Forest Ecol Manag 302, 34-42. http://dx.doi.org/10.1016/j.foreco.2013.03.044

Máguas C, Rascher KG, Martins-Louçao A, Carvalho P, Pinho P, Ramos M et al., 2011. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems. Biogeosciences Discus 8, 1591-1616. http://dx.doi.org/10.5194/bgd-8-1591-2011

Mateu J, Uso JL, Montes F, 1998. The spatial pattern of a forest ecosystem. Ecol Model 108, 163-174. http://dx.doi.org/10.1016/S0304-3800(98)00027-1

Moeur M, 1993. Characterizing spatial patterns of trees using stem-mapped data. For Sci 39, 756-775.

Mooney HA, Dunn HA, 1970. Convergent evolution of Mediterranean evergreen sclerophyllous shrubs. Vegetatio 24, 292-303.

Moreira MZ, Scholz FG, Bucci SJ, Sternberg LS, Goldstein G, Meinzer FC et al., 2003. Hydraulic lift in a neotropical savanna. Funct Ecol 17, 573-581. http://dx.doi.org/10.1046/j.1365-2435.2003.00770.x

Moreno-Gutiérrez C, Barberá GG, Nicolás E, De Luis M, Castillo VM, Martínez-Fernández F et al., 2011. Leaf d18O of remaining trees is affected by thinning intensity in a semiarid pine forest. Plant Cell Environ 34, 1009-1019. http://dx.doi.org/10.1111/j.1365-3040.2011.02300.x

Moreno-Gutiérrez C, Battipaglia G, Cherubini P, Saurer M, Nicolás E, Contreras S et al., 2012a. Stand structure modulates the long-term vulnerability of Pinus halepensis to climatic drought in a semiarid Mediterranean ecosystem. Plant Cell Environ 35, 1026-1039. http://dx.doi.org/10.1111/j.1365-3040.2011.02469.x

Moreno-Gutiérrez C, Dawson TE, Nicolás E, Querejeta JI, 2012b. Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytol. 196, 489-496. http://dx.doi.org/10.1111/j.1469-8137.2012.04276.x

Nicault A, Rathgeber C, Tessier L, Thomas A, 2001. Observations on the development of rings of Aleppo pine (Pinus halepensis Mill.): confrontation between radial growth, density and climatic factors. Ann For Sci 58, 769-784. http://dx.doi.org/10.1051/forest:2001162

Pélissier R, 1998. Tree spatial patterns in three contrasting plots of a southern Indian tropical moist evergreen forest. J Trop Ecol 14, 1-16. http://dx.doi.org/10.1017/S0266467498000017

Penttinen A, Stoyan D, Henttonen HM, 1992. Marked point processes in forest statistics. For Sci 38, 806-824.

R Development core team, 2007. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org.

Raz-Yaseef N, Rotenberg E, Yakir D, 2010. Effects of spatial variations in soil evaporation caused by tree shading on water flux partitioning in a semi-arid pine forest. Agr Forest Meteorol 150, 454-462. http://dx.doi.org/10.1016/j.agrformet.2010.01.010

Renshaw E, Comas C, Mateu J, 2009. Analysis of forest thinning strategies through the development of space-time growth-interaction simulation models. Stoch Env Res Risk A 23, 275-288. http://dx.doi.org/10.1007/s00477-008-0214-x

Ripley BD, 1976. The second-order analysis of stationary point processes. J Appl Probab 13, 255-266. http://dx.doi.org/10.2307/3212829

Rundel PW, 1988. Vegetation, nutrition and climate: Examples of integration. 3. Leaf structure and nutrition in Mediterranean-climate sclerophylls. In: Mediterranean-type ecosystems: A dara source book. (Specht RL, ed.). W. Junk Publishers, Dordrecht, pp. 157-167. http://dx.doi.org/10.1007/978-94-009-3099-5_8

Sala A, Tenhunen JD, 1994. Site-specific water relations and stomatal response of Quercus ilex in a Mediterranean watershed. Tree Physiol 14, 601-617. http://dx.doi.org/10.1093/treephys/14.6.601

Shaw DC, Chen J, Freeman EA, Braun DM, 2005. Spatial and population characteristics of dwarf mistletoe infected trees in an old-growth Douglas-fir western hemlock forest. Can J Forest Res 35, 990-1001. http://dx.doi.org/10.1139/x05-022

Soil Survey Staff, 2010. Keys to Soil Taxonomy, 11th ed. USDA-Natural Resources Conservation Service, Washington, D.C., USA.

Stoyan D, Penttinen A. 2000. Recent applications of point process methods in forestry statistics. Stat Sci 15, 61-78.

Stoyan D, Stoyan H, 1994. Fractals, Random Shapes and Point Fields: Methods of Geometrical Statistics. Wiley, Chichester, UK.

Terradas J, Savé R, 1992. The influence of summer and winter stress and water relationships on the distribution of Quercus ilex L. Plant Ecol 99-100, 137-145. http://dx.doi.org/10.1007/BF00118219

Valentini R, Mugnozza GES, Ehleringer JR, Scarascia-Mugnozza GE, 1992. Hydrogen and carbon isotope ratios of selected species of mediterranean macchia ecosystem. Funct Ecol 6, 627-631. http://dx.doi.org/10.2307/2389955

Verbeke G, Molenberghs G, 2000. Linear Mixed Models for Longitudinal Data. Springer, New York.

Voltas J, Chambel MR, Prada MA, Ferrio JP, 2008. Climate-related variability in carbon and oxygen stable isotopes among populations of Aleppo pine grown in common-garden tests. Trees-Struct Funct 22, 759-769. http://dx.doi.org/10.1007/s00468-008-0236-5

Zavala MA, Angulo O, Bravo de la Parra R, López-Marcos JC, 2007. An analytical model of stand dynamics as a function of tree growth, mortality and recruitment: The shade tolerance-stand structure hypothesis revisited. J Theor Biol 244, 440-450. http://dx.doi.org/10.1016/j.jtbi.2006.08.024

Zavala MA, Espelta JM, Retana J, 2000. Constraints and trade-offs in Mediterranean plant communities: the case of holm oak-Aleppo pine forests. Bot Rev 66, 119-149. http://dx.doi.org/10.1007/BF02857785

Zavala MA, Zea E, 2004. Mechanisms maintaining biodiversity in Mediterranean pine-oak forests: Insights from a spatial simulation model. Plant Ecol 171, 197-207. http://dx.doi.org/10.1023/B:VEGE.0000029387.15947.b7

DOI: 10.5424/fs/2015241-05846

Webpage: www.inia.es/Forestsystems