Contrasting secondary growth and water use efficiency patterns in native and exotic trees co-occurring in inner Spain riparian forests

Noelia González Muñoz, Juan Carlos Linares, Pilar Castro-Díez, Ute Sass-Klaassen


Aim of study: The invasive trees Ailanthus altissima and Robinia pseudoacacia are widely spreading in inner Spain riparian forests, where they co-occur with the natives Fraxinus angustifolia and Ulmus minor. In a climate change context, we aimed to identify some of the species traits that are leading these species to success (Basal Area Increment (BAI) and water-use efficiency (iWUE)).  We also aimed to describe the main environmental variables controlling studied species BAI. 

Area of study: Riparian forests of centralSpain.

Material and Methods: We measured tree-ring width and converted it to basal area increment (BAI); intrinsic water-use efficiency (iWUE) was estimated from tree ring carbon isotopes (δ13C). We compared the BAI and iWUE of the last 20 years between origins (native vs exotic) and among species. For each species, we evaluated iWUE and BAI relationships. Linear mixed-effect models were performed to identify the main environmental variables (temperature, precipitation, river flow) affecting BAI.

Main result: Native trees showed higher mean BAI than invaders, mainly due to the rising growth rate of U. minor. Invaders showed higher mean iWUE than natives. We did not find significant correlations between iWUE and BAI in any case. Warm temperatures in autumn positively affected the BAI of the natives, but negatively that of the invaders.

Research highlights: The contrasting effect of autumn temperatures on native and invasive species BAI suggests that invaders will be more hampered by the rising temperatures predicted for this century. The higher iWUE found for the invaders did not translate into increased radial growth, suggesting that drought stress may have prevented them of taking advantage of increased atmospheric CO2 for a faster growth. These findings point out that neither climate change nor rising CO2 seem to enhance the success of study invasive species over the natives in riparian forests of central Spain. Furthermore, the low BAI of R. pseudoacacia, and its climate-growth model suggest that climate change may especially hamper the success of this invader.

Key words: Invasive plants; Mediterranean ecosystems; Ulmus minor; Fraxinus angustifolia; Ailanthus altissima; Robinia pseudoacacia; basal area increment.

Full Text:




Atkin OK, Tjoelker MG, 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Plant Sci 8(7), 343-351.

Bernacchi CJ, Leakey ADB, Heady LE, Morgan PB, Dohleman FG, McGrath JM, Gillespie KM, Witting VE, Rogers A, Long SP, Ort DR, 2006. Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions. Plant Cell Environ 29, 2077-2090.

Blanco Castro E, Casado González MA, Costa Tenorio M, Escribano Bombín R, García Antón M, Génova Fuster M, Gómez Manzaneque MA, Gómez Manzaneque F, Moreno Saiz JC, Morla Juaristi C, et al., 2005. Los bosques ibéricos: una interpretación geobotánica. Planeta, Barcelona (Spain).

Bradley BA, Wilcove DD, Oppenheimer M, 2010. Climate change increases risk of plant invasion in the Eastern United States. Biol Invasions 12, 1855-1872.

Brasier CM, Buck K, Paoletti M, Crawford L, Kirk S, 2004. Molecular analysis of evolutionary changes in populations of Ophiostoma novo-ulmi. Inv Agr: Sist y Rec For 13:93-103

Burnham KP, Anderson DR, 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, Heidelberg (Germany).

Castro Díez P, Valle G, González Muñoz N, Alonso A, 2014. Can the life-history strategy explain the success of the exotic trees Ailanthus altissima and Robinia pseudoacacia in Iberian floodplain forests? Plos One 9(6): e100254.

Dukes JS, Chiariello NR, Loarie SR, Field CB, 2011. Strong response of an invasive plant species (Centaurea solstitialis L.) to global environmental changes. Ecol Appl 21, 1887-1894.

Ehleringer JR, Hall AE, Farquhar GD, 1993. Stable isotopes and plant carbon–water relations. Academic Press, San Diego (USA).

Farquhar GD, Caemmerer S, Berry JA, 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78-90.

Farquhar GD, O'Leary MH, Berry JA, 1982. On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9, 121-137.

Francey RJ, Farquhar GD, 1982. An explanation of 13C/12C variations in tree rings. Nature 297, 28-31.

Fritts HC, 1976. Tree rings and climate. Academic Press, London.

González-Muñoz N, Castro-Díez P, Fierro-Brunnenmeister N, 2011. Establishment success of coexisting native and exotic trees under an experimental gradient of irradiance and soil moisture. Environ Manage 48, 764-773.

González-Muñoz N, Castro-Díez P, Parker IM, 2013. Differences in nitrogen use strategies between native and exotic tree species: predicting impacts on invaded ecosystems. Plant Soil 363(1):319-329.

González-Muñoz N, Castro-Díez P, Godoy O, 2014. Lack of superiority of invasive over co-occurring native riparian tree seedling species. Biol Invasions 16(2), 269-281.

González-Muñoz N, Linares JC, Castro-Díez P, Sass-Klaassen U, 2014. Predicting climate change impacts on native and invasive tree species using radial growth and 21st century climate scenarios. European J For Res 133(6), 1073-1086.

Grissino-Mayer HD, 2001. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res 57(2), 205-221.

Gutte P, Klotz S, Lahr C, Trefflich A, 1987. Ailanthus altissima (Mill.) Swingle. Eine vergleichend pflanzengeographische Studie. Folia Geobotanica and Phytotaxonomica 22, 241-262.

Huntley JC, 1990. Black Locust. In: Burns RM, Honkala BH (eds) Silvics of North America 2: Hardwoods. Agriculture Handbook 654. U.S. Department of Agriculture, Forest Service, Washington DC.

IPCC, 2013. Climate change 2013, the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (UK).

Knapp LB, Canham CD, 2000. Invasion of an old growth forest in New York by Ailanthus altissima: sapling growth and recruitment in canopy gaps. J Torrey Bot Soc 127, 307-315.

Koretsune S, Fukuda K, Chang Z, Shi F, Ishida A, 2009. Effective precipitation seasons for interannual variation in δ13C and tree-ring width in early and late wood of Chinese pine and black locust on the Loess Plateau, China. J For Res 14, 88-94.

Kowarik L, Böcker R, 1984. Zur Verbreitung, Vergesellschaftung und Einbürgerung des Götterbaumes (Ailanthus altissima (Mill.) Swingle) in Mitteleuropa. Tuexenia 4, 9-29.

Kowarik I, Säumel I, 2007. Biological flora of Central Europe: Ailanthus altissima (Mill) Swingle. Perspect. Plant Ecol Evol Syst 8, 207-237.

Lamarque JL, Delzon S, Lortie CJ, 2011. Tree invasions: a comparative test of the dominant hypotheses and functional traits. Biol Invasions 13, 1969-1989.

Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H, 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768-1771.

Litton C, Raich JW, Ryan MG, 2007. Carbon allocation in forest ecosystems. Global Change Biol 13, 2089-2109.

Martín JA, Solla A, Burón M, López-Almansa JC, Gil L, 2006. Caracterización histórica, ecológica, taxonómica y fitosanitaria de una olmeda en Rivas-Vaciamadrid (Madrid). Investigación Agraria: Sistemas y Recursos Forestales 15(2), 208-217.

McDowell N, Allen CD, Marshall L, 2010. Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Global Change Biol 16, 399-415.

McDowell NG, 2011. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155, 1051-1059.

Menzel A, Fabian P, 1999. Growing season extended in Europe. Nature 397, 659.

Monturiol F, Alcalá L, 1990. Mapa de Asociaciones de suelos de la Comunidad de Madrid. Escala 1:200.000. CSIC and Comunidad de Madrid, Madrid.

Morgan JA, Pataki DE, Körner C, Clark H, del Grosso SJ, Grünzweig JM, Knapp AK, Mosier AR, Neton PCD, Niklaus PA, et al., 2004. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140, 11-25.

Morison JIL, 1993. Response of plants to CO2 under water limited conditions. Vegetatio 104, 193-209.

Overdieck D, Forstreuter M, 1994. Evapotranspiration of beech stands and transpiration of beech leaves subject to atmospheric CO2 enrichment. Tree Physiol 14,997-1003.

Parmesan C, Yohe G, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37-42.

Peñuelas J, Boada M, 2003. A global change-induced biome shift in the Montseny Mountains (NE Spain). Global Change Biol 9, 131-140.

Peñuelas J, Filella I, 2001. Phenology: responses to a warming world. Science 294, 793-795.

Picon C, Guehl JM, Aussenac G, 1996. Growth dynamics, transpiration and water-use efficiency in Quercus robur plants submitted to elevated CO2 and drought. Ann Sci Forest 53, 431-446.

Pyšek P, Prach D, Smilauer P, 1995. Plant invasions: general aspects and special problems. SPB Academic Publishing, Amsterdam.

R Development Core Team, 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at:

Rejmánek M, Richardson DM, 1996. What attributes make some plant species more invasive? Ecology 77, 1655-1661.

Rinn F, 1996. TSAP (Time series Analysis and Presentation) Version 3.0. Heidelberg, Germany.

Sanz Elorza M, Dana Sánchez ED, Sobrino Vespertinas E, 2004. Atlas de plantas alóctonas invasoras en España. Ministerio de Medio Ambiente, Madrid.

Sasek TW, Strain BR, 1991. Effects of CO2 enrichment on the growth and morphology of a native and an introduced honeysuckle vine. American J Bot 78, 69-75.

Saurer M, Siegwolf R, Schweingruber F, 2004. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biol 10, 2109-2120.

Smith SD, Huxman TE, Zitzer SF, Charlet TN, Houssman DC, Coleman JS, Fenstermarker LK, Seemann JR, Nowak RS, 2000. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408, 79-82.

Sorte CJB, Ibá-ez I, Blumenthal DM, Molianru NA, Grosholz ED, Diez JM, D’Antonio CM, Olden JD, Jones SJ, Dukes JS, 2013. Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecology Lett 16(2), 261-270.

Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW, 2002. Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. PNAS 99, 15497-15500.

Taylor AM, Brooks JR, Lachenbruch B, Morrell JJ, Voelker S, 2008. Correlation of carbon isotope ratios in the cellulose and wood extractives of Douglas-fir. Dendrochronologia 26, 125-131.

van Kleunen M, Weber E, Fischer M, 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13, 235-245.

Waring RH, 1987. Characteristics of trees predisposed to die. Bioscience 37, 569-574.

Yamaguchi DK, 1991. A simple method for cross-dating increment cores from living trees. Can J For Res 21, 414-416.

Zerebecki RA, Sorte CJB, 2011. Temperature tolerance and stress proteins as mechanisms of invasive species success. Plos One 6(4), e14806.

Ziska LH, 2003. Evaluation of the growth response of six invasive species to past, present and future atmospheric carbon dioxide. J Exp Bot 54(381), 395-404.

DOI: 10.5424/fs/2015241-06586